A simple software for swift computation of photon and charged particle interaction parameters: PAGEX.

Appl Radiat Isot

Department of Physics and Electronics, CHRIST (Deemed to be University), Bangalore Central Campus, Bengaluru, 560029, Karnataka, India.

Published: October 2021

PAGEX is a compact and user-friendly cross-platform software developed for swift computation of photon (X-ray and γ-ray) and charged particle interaction parameters for various applications. It is designed based on well-established theoretical formulations and computational techniques integrating various Python packages to effectively calculate parameters such as partial/total photon interaction cross-sections and mass attenuation coefficients, charged particle mass stopping powers and cross-sections, effective atomic number and electron density, mass-energy absorption coefficient, KERMA and build-up factors over a wide energy range. This tool is capable of generating both tabular and graphical outputs which can be saved in any user desired format. PAGEX has been verified against other widely employed software and databases, demonstrating good agreement. This software which facilitates robust computation is freely available from the authors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2021.109903DOI Listing

Publication Analysis

Top Keywords

charged particle
12
swift computation
8
computation photon
8
particle interaction
8
interaction parameters
8
simple software
4
software swift
4
photon charged
4
parameters pagex
4
pagex pagex
4

Similar Publications

Background/aim: For patients with unresectable locally advanced pancreatic cancer (LAPC), carbon-ion radiotherapy (C-ion RT) can safely deliver higher doses than conventional photon therapy, increasing the potential for long-term survival. However, achieving meaningful improvements in survival rates requires reliable prognostic biomarkers to identify patients likely to benefit from treatment.

Patients And Methods: In this study, we measured plasma levels of soluble interleukin-6 receptor (sIL-6R) before C-ion RT and examined their association with the risk of distant metastasis (DM), local recurrence (LR), and overall survival (OS).

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LiNiMnO within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!