This study seeks to assess the imbibition kinetics of low radioactive wastewater (from the DayaBay nuclear power plant) into a partially saturated ternary-binder mortar, as well as the sorption kinetics of Co and Cs from the water. Mortar samples with the initial saturation degrees of 0, 0.4, 0.6, 0.8 and 1.0 were prepared for the wastewater treatment. Pore structure of the mortar was characterized using water vapor sorption isotherm and mercury intrusion porosimetry tests interpreted by the Guggenheim-Anderson-de Boer isothermal equilibrium, and volume- and energy-based fractal models. Results show that the mortar has consistent fractal pore structure between the models, and the liquid imbibitions follow the fractal imbibition kinetics, in which the parameters are non-linearly impacted by the initial saturation degrees. The sorption rate and retention capacity of Cs are much lower than those of Co, and both follow the Brouers-Sotolongo fractional kinetics. The findings uncover the complex liquid imbibition and radionuclides sorption kinetics in cement-based porous materials, and the in-situ data would contribute to the material designs and sorption controls for large scale in-situ treatments of wastewater from nuclear power plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126897 | DOI Listing |
Sci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China. Electronic address:
Quercetin (Que) is a polyhydroxy flavonoid with strong inhibitory activity against cancer cells. However, the poor water solubility and low bioavailability of Que. limit its application in the functional food industry.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, Liaoning, China. Electronic address:
Nano-microplastics and 17β-E2 have been frequently detected as emerging high-concern pollutants in aquatic systems, and their interaction at the solid/liquid interface has become a research focus in environmental studies. The interfacial sorption kinetics and equilibrium characteristics of 17β-estradiol (17β-E2) on nano-polystyrene (Nano-PS) with different particle sizes and organic functional group modifications were systematically investigated in aqueous environments in this study. The interfacial interaction mechanism between Nano-PS particles and 17β-E2 was elucidated by utilizing SEM, FTIR, XPS and BET techniques.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!