Blueberry aroma is one of the most important quality traits that influences consumer purchasing decisions. This study aimed to optimize and validate a solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) method for the quantification of 73 volatile compounds in northern highbush blueberries. A SPME extraction of blueberries with water and specific proportions of sodium chloride, citric acid, and ascorbic acid, for 60 min at 50 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was optimal. The method was validated for sensitivity, reproducibility, linearity, and accuracy, and used to quantify volatile compounds through matrix-matched calibration curves in six blueberry cultivars ('Duke', 'Draper', 'Bluecrop', 'Calypso', 'Elliott', and 'Last Call'). Terpenes represented the most abundant volatile fraction, followed by aldehydes and alcohols. Linalool and 2-(E)-hexenal were key compounds that differentiated blueberry cultivars via Principal Component Analysis (PCA). Enantiomeric analyses revealed an excess of (-)-limonene, (-)-α-pinene, and (+)-linalool for all cultivars with potential impacts on the blueberry aroma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!