According to the founders of quantum mechanics and quantum biology P. Jordan and E. Schrödinger, the main difference between living and inanimate objects is the dictatorial influence of genetic molecules on the whole living organism. Code biology can make a valuable contribution to understanding this dictatorial influence of genetic molecules whose ensemble is endowed with many interconnected alphabets and codes. The paper is devoted to probability rules of nucleotide sequences of single-stranded DNA in eukaryotic and prokaryotic genomes. These rules are connected with n-plets alphabets of DNA whose nucleotide sequences are considered as bunches of many parallel texts written in interconnected n-plets alphabets. The rules draw attention to genomic phenomena of special tetragroupings of n-plets and new genomic symmetries. A generalization of the second Chargaff's rule is described. They show the existence of long-range coherence in genomic DNA sequences and reveal new connections of structural features of genomic sequences with formalisms of quantum mechanics and quantum informatics. The author supposes that the received results are related to the known vibration-resonance theory of G. Frohlich about long-range coherence in biological systems, that is, about collective quantum effects there. The possible influence of the described genetiс probability phenomena on the genetically inherited physiological structures is noted and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2021.104503DOI Listing

Publication Analysis

Top Keywords

long-range coherence
12
code biology
8
quantum mechanics
8
mechanics quantum
8
dictatorial influence
8
influence genetic
8
genetic molecules
8
nucleotide sequences
8
n-plets alphabets
8
quantum
6

Similar Publications

Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions.

View Article and Find Full Text PDF

CloudSim is a versatile simulation framework for modeling cloud infrastructure components that supports customizable and extensible application provisioning strategies, allowing for the simulation of cloud services. On the other hand, Distributed Acoustic Sensing (DAS) is a ubiquitous technique used for measuring vibrations over an extended region. Data handling in DAS remains an open issue, as many applications need continuous monitoring of a volume of samples whose storage and processing in real time require high-capacity memory and computing resources.

View Article and Find Full Text PDF
Article Synopsis
  • Excitons, which are pairs of electrons and holes held together by Coulomb forces, can form a superfluid at low temperatures due to their bosonic properties.
  • The research involves directly imaging this exciton superfluid in a specific material setup (MoSe-WSe heterostructure), demonstrating a significant level of order across the sample.
  • The study also details how variations in exciton density and temperature help construct a phase diagram, revealing that the superfluid state can persist up to 15 K, aligning well with theoretical expectations and paving the way for advancements in quantum devices and superfluid research.
View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF
Article Synopsis
  • Long-range spin-spin interactions can create nonequilibrium dynamics that enhance the collective spin of quantum ensembles, improving entanglement as the system size increases.
  • The study shows that even short-range interactions in 2D U(1)-symmetric systems can lead to scalable squeezing, particularly in a critical phase that does not exhibit long-range order at finite temperatures.
  • The findings suggest that slow magnetization decay during nonequilibrium dynamics can protect scalable squeezing, paving the way for the creation of large entangled states in various quantum technologies, such as ultracold atoms and superconducting circuits.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!