Freeze drying is one of the most convenient ways to preserve microorganisms, but in the freeze-drying process, strains will inevitably suffer varying degrees of damage under different conditions. The deterioration of cell membrane integrity is one of the main forms of damage. The type and ratio of fatty acids in the cell membrane affect its characteristics. Therefore, it is worth investigating whether certain fatty acids can increase freeze-drying resistance. In this study, we found that adding a low concentration of oleic acid to a cryoprotectant could increase survival rate of strains of Lactiplantibacillus plantarum following freeze drying, and the optimal concentration of oleic acid was determined to be 0.001%. When 0.001% oleic acid was added to phosphate-buffered saline, the freeze-drying survival rate of L. plantarum increased by up to 6.63 times. Adding 0.001% oleic acid to sorbitol, the survival rate of L. plantarum increased by as much as 3.65 times. The 0.001% oleic acid-sucrose cryoprotectant resulted in a freeze-drying survival rate of L. plantarum of about 90%, a 2.26-fold improvement compared with sucrose alone. Although the effect of oleic acid depends on the cryoprotectants used and the strain treated, addition of oleic acid showed significant improvement overall. Further experiments showed that adding a low concentration of oleic acid to the cryoprotectants improved the freeze-drying survival rate of L. plantarum by maintaining cell membrane integrity and lactate dehydrogenase activity. Our findings provide a new strategy for safeguarding bacterial viability in commonly used cryoprotectants by the addition of a common food ingredient, which may be extensively applied in the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2020-20070 | DOI Listing |
Heliyon
January 2025
Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon.
The present study reports the characterization of the phytochemical content and the antibacterial activity of ethanolic extracts from the leaves (LE) and stems (SE) of against Methicillin resistant (MRSA. Important functional groups were determined by analyzing the FTIR spectra of LE and SE. The phytochemical profiles were analyzed by GC-MS, and these characterized the chemicals according to retention periods and peak regions.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Objective: This study investigates the protective effects of lactic acid, a metabolite of , on non-alcoholic fatty liver disease (NAFLD) induced by a high-sugar, high-fat diet (HFD) in mice, in the context of the gut-liver axis.
Methods: A NAFLD mouse model was established using a HFD, and different intervention groups were set up to study the protective effects of and its metabolite lactic acid. The groups included a control group, NAFLD group, treatment group, Glyceraldehyde-3-P (G-3P) co-treatment group, and NOD-like receptor family pyrin domain containing 3 (NLRP3) overexpression group.
Food Res Int
February 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
To explore the effect of oleic acid, linoleic acid, and linolenic acid on "glucose-glutathione" Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC-MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC-MS-O in four model systems.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Gas foam injection offers a viable solution to challenges faced in oil reservoirs, yet ensuring optimal foamability and stability remains a pivotal hurdle in practical field operations. This study presents a novel synthesis procedure to create silica (SiO) Janus nanoparticles (JNPs) and examines their potential to enhance gas foam stability for enhanced oil recovery (EOR) applications. Two variations of SiO JNPs were synthesized via a masking procedure, employing oleic acid and ascorbic acid within a Pickering emulsion, marking a pioneering approach.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290 (C1425FQB), Buenos Aires, CABA, República Argentina.
Sambucus australis is a wild species with purple fruits like berries. It is native from South America and can be found in Argentina, Uruguay, Paraguay, Bolivia, and Brazil. A comprehensive characterization of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!