A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development. | LitMetric

Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development.

BMC Genom Data

Key Laboratory of Biology and Genetic Improvement of Maize in the Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.

Published: August 2021

Background: Maize kernel filling, which is closely related to the process of double fertilization and is sensitive to a variety of environmental conditions, is an important component of maize yield determination. Silk is an important tissue of maize ears that can discriminate pollen and conduct pollination. Therefore, investigating the molecular mechanisms of kernel development and silk senescence will provide important information for improving the pollination rate to obtain high maize yields.

Results: In this study, transcript profiles were determined in an elite maize inbred line (KA105) to investigate the molecular mechanisms functioning in self-pollinated and unpollinated maize kernels and silks. A total of 5285 and 3225 differentially expressed transcripts (DETs) were identified between self-pollinated and unpollinated maize in a kernel group and a silk group, respectively. We found that a large number of genes involved in key steps in the biosynthesis of endosperm storage compounds were upregulated after pollination in kernels, and that abnormal development and senescence appeared in unpollinated kernels (KUP). We also identified several genes with functions in the maintenance of silk structure that were highly expressed in silk. Further investigation suggested that the expression of autophagy-related genes and senescence-related genes is prevalent in maize kernels and silks. In addition, pollination significantly altered the expression levels of senescence-related and autophagy-related genes in maize kernels and silks. Notably, we identified some specific genes and transcription factors (TFs) that are highly expressed in single tissues.

Conclusions: Our results provide novel insights into the potential regulatory mechanisms of self-pollinated and unpollinated maize kernels and silks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379809PMC
http://dx.doi.org/10.1186/s12863-021-00981-4DOI Listing

Publication Analysis

Top Keywords

maize kernels
16
kernels silks
16
molecular mechanisms
12
maize kernel
12
self-pollinated unpollinated
12
unpollinated maize
12
maize
11
highly expressed
8
autophagy-related genes
8
silk
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!