Simulation of a sudden drop-off in distal dense core vesicle concentration in Drosophila type II motoneuron terminals.

Int J Numer Method Biomed Eng

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.

Published: December 2021

Recent experimental observations have shown evidence of an unexpected sudden drop-off in the dense core vesicles (DCVs) content at the ends of certain types of axon endings. This article seeks to determine whether these observations may be explained without modifying the parameters characterizing the ability of distal en passant boutons to capture and accumulate DCVs. We developed a mathematical model that is based on the conservation of captured and transiting DCVs in boutons. The model consists of 77 ordinary differential equations and is solved using a standard Matlab solver. We hypothesize that the drop in DCV content in distal boutons is due to an insufficient supply of anterogradely moving DCVs coming from the soma. As anterogradely moving DCVs are captured (and eventually destroyed) in more proximal boutons on their way to the end of the terminal, the fluxes of anterogradely moving DCVs between the boutons become increasingly smaller, and the most distal boutons are left without DCVs. We tested this hypothesis by modifying the flux of DCVs entering the terminal and found that the number of most distal boutons left unfilled increases if the DCV flux entering the terminal is decreased. The number of anterogradely moving DCVs in the axon can be increased either by the release of a portion of captured DCVs into the anterograde component or by an increase of the anterograde DCV flux into the terminal. This increase could lead to having enough anterogradely moving DCVs such that they could reach the most distal bouton and then turn around by changing molecular motors that propel them. The model suggests that this could result in an increased concentration of resident DCVs in distal boutons beginning with bouton 2 (the most distal is bouton 1). This is because in distal boutons, DCVs have a larger chance to be captured from the transiting state as they pass the boutons moving anterogradely and then again as they pass the same boutons moving retrogradely.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3523DOI Listing

Publication Analysis

Top Keywords

distal boutons
20
anterogradely moving
20
moving dcvs
20
dcvs
13
boutons
11
distal
9
sudden drop-off
8
dense core
8
captured transiting
8
dcvs boutons
8

Similar Publications

TNBS colitis induces architectural changes and alpha-synuclein overexpression in mouse distal colon: A morphological study.

Cell Tissue Res

December 2024

Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy.

Alpha-synuclein (α-syn) is widely expressed in presynaptic neuron terminals, and its structural alterations play an important role in the pathogenesis of Parkinson's disease (PD). Aggregated α-syn has been found in brain, in the peripheral nerves of the enteric nervous system (ENS) and in the intestinal neuroendocrine cells during synucleinopathies and inflammatory bowel disorders. In the present study, we evaluated the histomorphological features of murine colon with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, a common model of colitis.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons rely on autophagy, a process that recycles damaged proteins and organelles, to maintain cellular health and function over their long lifespan, particularly in the face of challenges like starvation.
  • Research shows that a neuron-specific protein called APache plays a critical role in autophagy by helping transport autophagosomes back to the cell body, affecting synaptic health.
  • Silencing APache disrupts this transport, leading to an accumulation of autophagosomes at synapses which may contribute to early neurodegenerative issues linked to impaired autophagy.
View Article and Find Full Text PDF

Spike transmission failures in axons from cortical neurons .

iScience

October 2024

Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027, USA.

The propagation of action potentials along axons is traditionally considered reliable due to the high safety factor for axonal spike transmission. However, numerical simulations suggest that high-frequency spikes could fail to invade distal axonal branches. To explore this experimentally , we used an axonal-targeted calcium indicator to image action potentials at axonal terminal branches in the superficial layers of mouse somatosensory cortical neurons.

View Article and Find Full Text PDF

The vestibular hair cell receptors of anamniotes, designated Type II, are presynaptic to bouton endings of vestibular nerve distal neurites. An additional flask-shaped hair cell receptor, Type I, is present in amniotes, and communicates with a chalice-shaped afferent neuritic ending that surrounds the entire hair cell except its apical neck. Since the full repertoire of afferent fiber dynamics and sensitivities observed throughout the vertebrate phyla can be accomplished through Type II hair cell-bouton synapses, the functional contribution(s) of Type I hair cells and their calyces to vestibular performance remains a topic of great interest.

View Article and Find Full Text PDF

All-or-none signalling by action potentials (APs) in neuronal axons is pivotal for the precisely timed and identical size of outputs to multiple distant targets. However, technical limitations with respect to measuring the signalling in small intact axons have hindered the evaluation of high-fidelity signal propagation. Here, using direct recordings from axonal trunks and/or terminals of cerebellar Purkinje cells in slice and culture, we demonstrate that the timing and amplitude of axonal outputs are gradually modulated by cAMP depending on the length of axon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!