Stimulation of pyrolytic carbon materials as electron shuttles on the anaerobic transformation of recalcitrant organic pollutants: A review.

Sci Total Environ

School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.

Published: December 2021

Pyrolytic carbon materials (PCMs) with various surface functionalities are widely used as environmentally friendly and cost-efficient adsorbents for the removal of organic and inorganic pollutants. Recent studies have illustrated that PCMs as electron shuttles (ESs) could also show excellent performances in promoting the anaerobic transformation of recalcitrant organic pollutants (ROPs). Numerous studies have demonstrated the excellent electron-shuttle capability (ESC) of PCMs to stimulate the anaerobic reductive transformation of ROPs. However, there is a lack of consistent understanding of the mechanism of ESC formation in PCMs and the stimulation mechanism for ROPs anaerobic transformation. To gain a more comprehensive understanding of the latest developments in the study of PCMs as ESs for ROPs anaerobic transformation, this review summarizes the formation mechanism, influencing factors, and stimulation mechanisms of ESC. ESC benefits from redox functional groups (quinone and phenol groups), persistent free radicals (PFRs), redox-active metal ions, conductive graphene phase, and porous nature of their surface. The factors influencing ESC include the highest treatment temperature (HTT), feedstocks, modification methods, and environmental conditions, of which, the HTT is the key factor. PCMs promote the reductive transformation of ROPs under anaerobic conditions via abiotic and biotic pathways. Eventually, the prospects for the ROPs anaerobic transformation enhanced by PCMs are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149696DOI Listing

Publication Analysis

Top Keywords

anaerobic transformation
20
rops anaerobic
16
pyrolytic carbon
8
carbon materials
8
electron shuttles
8
transformation recalcitrant
8
recalcitrant organic
8
organic pollutants
8
reductive transformation
8
transformation rops
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!