Encapsulation of volatile essential oils has been investigated to provide an active food packaging (AFP) material with more control over their fast release and pungent smell. In this work, Gum Arabic-based adhesive membrane was developed as a self-stick AFP material, delivering cinnamon essential oil (CEO) in vapor phase. Gum Arabic (GA) was grafted with butyl acrylate (BA) and hydroxyethyl methacrylate [GA-g-poly(BA-HEMA)]. Adhesive membrane was characterized by means of spectral, physicochemical and rheological analysis. GA-adhesive membrane made of 5% wt/v GA, 3.5 m mol HEMA, and 87 m mol BA with 21 N/m tack are loaded with 4, 8 and 10% v/v of CEO and used for antimicrobial bioassays. GA-g-poly(BA-HEMA) membrane prolonged CEO release up to 2 days. 8%v/v CEO showed superior activities against both Gram negative and positive bacteria. Shelf-life of cheese samples, packed with the self-stick membranes loaded with cinnamon extract, has extended from 3 to 8 weeks. Cheese samples that inoculated with shiga toxin producing E. coli O157:H7 and packed in plastic boxes with the self-stick AFP (4, 8 and 10 % CEO), showed significant reduction in the total bacteria counts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.08.071 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.
View Article and Find Full Text PDFFood Chem
January 2025
School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia. Electronic address:
The study highlights the impact of different carbohydrate-based wall materials on the encapsulation and release of flavors and physicochemical characteristics of spray-dried oleoresin blends. The inlet temperature and the wall material type significantly affected the spray drying yield, and Hi-Cap 100, at 150 °C, produced the highest yield. All the wall materials had high water solubility, and Hi-Cap 100 reported the best wettability.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran. Electronic address:
RSC Adv
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!