Characterization of the novel HLA-B*57:02:01:03 allele by sequencing-based typing.

HLA

HLA Typing Lab, Department of Pathology and Laboratory Medicine, KSAU-HS, MNGHA, Riyadh, Saudi Arabia.

Published: December 2021

Two-nucleotide changes in the 3' UTR of HLA-B*57:02:01:01 result in the novel HLA-B*57:02:01:03 allele.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tan.14415DOI Listing

Publication Analysis

Top Keywords

novel hla-b*57020103
8
hla-b*57020103 allele
8
characterization novel
4
allele sequencing-based
4
sequencing-based typing
4
typing two-nucleotide
4
two-nucleotide changes
4
changes utr
4
utr hla-b*57020101
4
hla-b*57020101 result
4

Similar Publications

Directed evolution of antimicrobial peptides using multi-objective zeroth-order optimization.

Brief Bioinform

November 2024

School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China.

Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties, they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity, and local optimum.

View Article and Find Full Text PDF

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.

View Article and Find Full Text PDF

The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.

View Article and Find Full Text PDF

Purpose: This study aimed to elucidate the correlation between the degree of fat infiltration (FI) in thoracic paraspinal muscles and thoracic vertebral degeneration (TVD).

Methods: This cross-sectional study comprised 474 patients who underwent standard thoracic computed tomography (CT) scans. The FI was quantified as the percentage of adipose tissues within the cross-sectional area of thoracic paraspinal muscles.

View Article and Find Full Text PDF

Keyhole decompression surgery for holospinal epidural abscess: a novel approach for spinal stability preservation.

Eur Spine J

January 2025

Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.

Purpose: Spinal epidural abscesses are rare yet serious conditions, often necessitating emergency surgical intervention. Holospinal epidural abscesses (HEA) extending from the cervical to the lumbosacral spine are even rarer and present significant challenges in management. This report aims to describe a case of HEA with both ventrally-located cervical and dorsally-located thoracolumbar epidural abscesses treated with a combination of anterior keyhole decompression and posterior skip decompression surgeries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!