A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fuzzy segmentation and black widow-based optimal SVM for skin disease classification. | LitMetric

Fuzzy segmentation and black widow-based optimal SVM for skin disease classification.

Med Biol Eng Comput

Department of Computer Science and Engineering, R.M.D Engineering College, Kavaraipettai, Tamilnadu, India.

Published: October 2021

The skin, which has seven layers, is the main human organ and external barrier. According to the World Health Organization (WHO), skin cancer is the fourth leading cause of non-fatal disease risk. In medicinal fields, skin disease classification is a major challenging issue due to inaccurate outputs, overfitting, larger computational cost, and so on. We presented a novel approach of support vector machine-based black widow optimization (SVM-BWO) for skin disease classification. Five different kinds of skin disease images are taken such as psoriasis, paederus, herpes, melanoma, and benign with healthy images which are chosen for this work. The pre-processing step is handled to remove the noises from the original input images. Thereafter, the novel fuzzy set segmentation algorithm subsequently segments the skin lesion region. From this, the color, gray-level co-occurrence matrix texture, and shape features are extracted for further process. Skin disease is classified with the usage of the SVM-BWO algorithm. The implementation works are handled in MATLAB-2018a, thereby the dataset images were collected from ISIC-2018 datasets. Experimentally, various kinds of performance analyses with state-of-the-art techniques are performed. Anyway, the proposed methodology outperforms better classification accuracy of 92% than other methods. Workflow diagram of the proposed methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-021-02415-wDOI Listing

Publication Analysis

Top Keywords

skin disease
20
disease classification
12
skin
8
proposed methodology
8
disease
6
fuzzy segmentation
4
segmentation black
4
black widow-based
4
widow-based optimal
4
optimal svm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!