Refractive prediction error in cataract surgery using an optical biometer equipped with anterior segment OCT.

J Cataract Refract Surg

Chukyo Eye Clinic, Nagoya, Japan (Kato, Kei Ichikawa, Tamura, Kazuo Ichikawa); the Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan (Kojima); the Department of Ophthalmology, Japan Community Healthcare Organization, Chukyo Hospital, Nagoya, Japan (Tamaoki).

Published: April 2022

Purpose: To evaluate refractive error after cataract surgery using an optical biometer equipped with anterior segment optical coherence tomography (AS-OCT).

Setting: Chukyo Eye Clinic, Nagoya, Japan.

Design: Retrospective observational design.

Methods: In total, 150 patients with cataract (150 eyes, mean age 73.4 ± 8.2 years, men 76, women 74), who underwent measurement of parameters with the AS-OCT scanners ANTERION (AS-OCTB) and IOLMaster 700 (OCTB) before cataract surgery, were enrolled in the study. Refractive prediction error was compared between the 2 devices using the SRK/T, Haigis, and Barrett Universal II (UII) formulas for intraocular lens (IOL) power calculation.

Results: There were significant differences between AS-OCTB and OCTB in axial length, mean corneal refractive power, anterior chamber depth, lens thickness, and corneal diameter (n = 150). In the SRK/T formula, the arithmetic means of refractive prediction errors for AS-OCTB and OCTB were -0.06 ± 0.46 diopters (D) and 0.02 ± 0.42 D, respectively. In the Haigis formula, the arithmetic means of refractive prediction errors for AS-OCTB and OCTB were -0.23 ± 0.40 D and -0.08 ± 0.35 D, respectively. In the Barrett UII formula, the arithmetic means of refractive prediction errors for AS-OCTB and OCTB were -0.02 ± 0.38 D and 0.11 ± 0.36 D, respectively. AS-OCTB showed significantly larger refractive prediction error toward myopia than OCTB in all 3 formulas (P < .0001).

Conclusions: The refractive prediction error using AS-OCTB showed a small difference from that using OCTB. While clinically comparable, the 2 methods could drive meaningful differences in IOL selection.

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.jcrs.0000000000000781DOI Listing

Publication Analysis

Top Keywords

refractive prediction
28
prediction error
16
as-octb octb
16
cataract surgery
12
formula arithmetic
12
arithmetic refractive
12
prediction errors
12
errors as-octb
12
refractive
9
error cataract
8

Similar Publications

Objective: This study investigates the refractive accuracy of eight intraocular lens (IOL) power calculation formulas in patients with postoperative refractive surprise after phacoemulsification. It aims to determine if a different formula could result in better refractive outcomes in these eyes.

Methods And Analysis: We retrospectively reviewed consecutive patients undergoing uncomplicated phacoemulsification as a sole procedure between March 2007 and September 2020 at the University of Washington by glaucoma subspecialists as part of a study investigating cataract surgery in normal eyes.

View Article and Find Full Text PDF

Background: To evaluate the ocular biometry agreement and prediction of postoperative refractive outcomes obtained using two swept-source optical coherence tomography (SS-OCT) biometers: Anterion (Heidelberg Engineering, Heidelberg, Germany) and Argos (Alcon, Fort Worth, TX, USA).

Methods: Ambispective analysis was conducted on 105 eyes at the Samsung Medical Center, Seoul, Republic of Korea, between June 2021 and March 2022. Biometric values were assessed using both devices before cataract surgery.

View Article and Find Full Text PDF

Exome-wide genetic risk score (ExGRS) to predict high myopia across multi-ancestry populations.

Commun Med (Lond)

December 2024

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Background: High myopia (HM), characterized by a severe myopic refractive error, stands as a leading cause of visual impairment and blindness globally. HM is a multifactorial ocular disease that presents high genetic heterogeneity. Employing a genetic risk score (GRS) is useful for capturing genetic susceptibility to HM.

View Article and Find Full Text PDF

Purpose: To evaluate the outcomes of scleral-fixated intraocular lenses (IOLs) implanted using either Yamane technique or Gore-Tex suture fixation, in comparison to intracapsular lens fixation, and to assess the efficacy of various lens formulas in achieving predicted refractive targets.

Patients And Methods: This study included 45 eyes from 44 patients with scleral-fixated IOLs, comprising 37 Yamane eyes and 8 Gore-Tex eyes. Preoperative refractive predictions from various formulae were compared with final postoperative refraction.

View Article and Find Full Text PDF

Artificial intelligence virtual assistants in primary eye care practice.

Ophthalmic Physiol Opt

December 2024

Optometry and Vision Sciences Research Group, Aston University, Birmingham, UK.

Purpose: To propose a novel artificial intelligence (AI)-based virtual assistant trained on tabular clinical data that can provide decision-making support in primary eye care practice and optometry education programmes.

Method: Anonymised clinical data from 1125 complete optometric examinations (2250 eyes; 63% women, 37% men) were used to train different machine learning algorithm models to predict eye examination classification (refractive, binocular vision dysfunction, ocular disorder or any combination of these three options). After modelling, adjustment, mining and preprocessing (one-hot encoding and SMOTE techniques), 75 input (preliminary data, history, oculomotor test and ocular examinations) and three output (refractive, binocular vision status and eye disease) features were defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!