Symptomatic overlap of depressive episodes in bipolar disorder (BD) and major depressive disorder (MDD) is a major diagnostic and therapeutic problem. Mania in medical history remains the only reliable distinguishing marker which is problematic given that episodes of depression compared to episodes of mania are more frequent and predominantly present at the beginning of BD. Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive, task-free, and well-tolerated method that may provide diagnostic markers acquired from spontaneous neural activity. Previous rs-fMRI studies focused on differentiating BD from MDD depression were inconsistent in their findings due to low sample power, heterogeneity of compared samples, and diversity of analytical methods. This meta-analysis investigated resting-state activity differences in BD and MDD depression using activation likelihood estimation. PubMed, Web of Science, Scopus and Google Scholar databases were searched for whole-brain rs-fMRI studies which compared MDD and BD currently depressed patients between Jan 2000 and August 2020. Ten studies were included, representing 234 BD and 296 MDD patients. The meta-analysis found increased activity in the left insula and adjacent area in MDD compared to BD. The finding suggests that the insula is involved in neural activity patterns during resting-state that can be potentially used as a biomarker differentiating both disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379217 | PMC |
http://dx.doi.org/10.1038/s41598-021-96319-2 | DOI Listing |
Neural Comput
January 2025
Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.
Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.
View Article and Find Full Text PDFNeural Comput
January 2025
Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, U.S.A.
How episodic memories are formed in the brain is a continuing puzzle for the neuroscience community. The brain areas that are critical for episodic learning (e.g.
View Article and Find Full Text PDFScience
January 2025
Department of Medicine and Surgery, University of Parma, Parma, Italy.
The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States of America.
Complex systems, such as in brains, markets, and societies, exhibit internal dynamics influenced by external factors. Disentangling delayed external effects from internal dynamics within these systems is often difficult. We propose using a Vector Autoregressive model with eXogenous input (VARX) to capture delayed interactions between internal and external variables.
View Article and Find Full Text PDFCell Rep
January 2025
Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
Understanding how corticostriatal circuits mediate behavioral selection and initiation in a naturalistic setting is critical to understanding behavior choice and execution in unconstrained situations. The central striatum (CS) is well poised to play an important role in these spontaneous processes. Using fiber photometry and optogenetics, we identify a role for CS in grooming initiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!