Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157:H7 in wash water.

Food Microbiol

Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus, Universitario de Espinardo, 25, 30100, Murcia, Spain.

Published: December 2021

The elaboration of guidelines for the industry to establish minimum concentration to prevent cross-contamination during washing practices based on operational limits is the core of the recommended criteria for the use of sanitizers. Several studies have evidenced that sanitizers reduced the levels of foodborne pathogens. However, they might lead to the progress into a viable but non-culturable (VBNC) state of the cells. This evidence has raised concerns regarding the effectiveness of the recommended washing practices for the inactivation of microbial cells present in the process wash water (PWW). The present study evaluated if the most commonly used sanitizers, including sodium hypochlorite (chlorine), peroxyacetic acid (PAA) and chlorine dioxide (ClO) at established operational limits induced the VBNC stage of Listeria monocytogenes and Escherichia coli O157:H7. Prevention of cross-contamination was examined in four different types of PWW from washing shredded lettuce and cabbage, diced onions, and baby spinach under simulated commercial conditions of high organic matter and 1 min contact time. The results obtained for chlorine showed that recommended operational limits (20-25 mg/L free chlorine) were effective in inactivating L. monocytogenes and E. coli O157:H7 in the different PWWs. However, the operational limits established for PAA (80 mg/L) and ClO (3 mg/L) reduced the levels of culturable pathogenic bacteria but induced the VBNC state of the remaining cells. Consequently, the operational limits for chlorine are satisfactory to inactivate foodborne pathogens present in PWW and prevent cross-contamination but higher concentrations or longer contact times should be needed for PAA and ClO to reduce the likelihood of the induction of VBNC bacteria cells, as it represents a hazard.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2021.103866DOI Listing

Publication Analysis

Top Keywords

operational limits
20
coli o157h7
12
peroxyacetic acid
8
chlorine dioxide
8
viable non-culturable
8
non-culturable vbnc
8
vbnc stage
8
stage listeria
8
listeria monocytogenes
8
monocytogenes escherichia
8

Similar Publications

Predictive model performance may deteriorate when applied to data sources that were not used for training, thus, external validation is a key step in successful model deployment. As access to patient-level external data sources is typically limited, we recently proposed a method that estimates external model performance using only external summary statistics. Here, we benchmark the proposed method on multiple tasks using five large heterogeneous US data sources, where each, in turn, plays the role of an internal source and the remaining-external.

View Article and Find Full Text PDF

Chronic Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), affecting the female genital tract in 25-66% of the patients. This condition, referred to as Genital GVHD is an underdiagnosed gynecologic comorbidity, that can significantly impair quality of life. We aimed to describe the prevalence and management of genital GVHD following HSCT.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenation in trauma: a single-center retrospective observational study.

Eur J Trauma Emerg Surg

January 2025

ECMO Center Karolinska, Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Akademiska straket 14, Stockholm, 17176, Sweden.

Purpose: Globally, trauma is a leading cause of death in young adults. The use of extracorporeal membrane oxygenation (ECMO) in the trauma population remains controversial due to the limited published research. This study aimed to analyze 30-day survival of all the trauma ECMO patients at our center, with respect to injury severity score (ISS) and new injury severity score (NISS).

View Article and Find Full Text PDF

Short-term outcomes of mesh-suture repair in the treatment of ventral hernias: a single-center study.

Surg Endosc

January 2025

Division of Minimally Invasive and Bariatric Surgery, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA.

Background: Defect closure with mesh suture is a novel technique for hernia repair. Originally described as the construction of lightweight macroporous polypropylene mesh strips as a suture material, it is now available as an FDA-approved product. Mesh suture better distributes tensile forces and reduces fascial tearing compared to traditional suture but requires less implanted material and tissue dissection compared to planar mesh.

View Article and Find Full Text PDF

Exploring the efficacy of fluorouracil and platinum based chemotherapy in advanced hepatocellular carcinoma to bridge the treatment gap in resource limited settings.

Sci Rep

January 2025

Division of Medical Oncology, Department of Internal Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, 16247, Korea.

Advanced hepatocellular carcinoma (HCC) poses treatment challenges, especially where access to multi-kinase inhibitors and ICIs is limited by high costs and lack of insurance. This study evaluates the effectiveness of 5-fluorouracil (5-FU) plus platinum-based chemotherapy as an alternative systemic treatment for advanced HCC. A retrospective analysis of advanced HCC patients treated with 5-FU plus platinum-based chemotherapy was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!