Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Allocation of limited resources to improve quality, patient safety, and outcomes is a decision-making challenge health care leaders face every day. While much valuable health care management research has concentrated on administrative data analysis, this approach often falls short of providing actionable information essential for effective management of specific system implementations and complex systems. This comprehensive performance analysis of a hospital-wide system illustrates application of various analysis approaches to support understanding specific system behaviors and identify leverage points for improvement. The study focuses on performance of a hospital rescue system supporting early recognition and response to patient deterioration, which is essential to reduce preventable inpatient deaths.
Methods: Retrospective analysis of tertiary care hospital inpatient and rescue data was conducted using a systems analysis approach to characterize: patient demographics; rescue activation types and locations; temporal patterns of activation; and associations of patient factors, including complications, with post-rescue care disposition and outcomes.
Results: Increases in bedside consultations (20% per year) were found with increased rescue activations during periods of resource limitations and changes (e.g., shift changes, weekends). Cardiac arrest, respiratory failure, and sepsis complications present the highest risk for rescue and death. Distributions of incidence of rescue and death by day of patient stay may suggest opportunities for earlier recognition.
Conclusions: Specific findings highlight the potential of using rescue-related risk and targeted resource deployment strategies to improve early detection of deterioration. The approach and methods applied can be used by other institutions to understand performance and allow rational incremental improvements to complex care delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379722 | PMC |
http://dx.doi.org/10.1186/s12913-021-06855-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!