Thanks to the low cost, free dendritic hazards, and high volumetric capacity, magnesium (Mg)-ion batteries have attracted increasing attention as alternative energy storage devices to lithium-ion batteries. Despite the successful development of electrode materials, the real-life application potential of Mg-ion full battery systems (MIFBSs) is largely hindered by the lack of suitable electrode couples and hence low diffusion kinetics, which induce low specific capacity, poor rate performance, and low working voltage. Herein, we report an aqueous rechargeable MIFBS by employing copper hexacyanoferrate (CuHCF) as the cathode and 3,4,9,10-perylene-tetracarboxylic acid diimide (PTCDI) as the anode in 1 moL L MgCl electrolyte. The combination of PTCDI//CuHCF allows efficient redox and convenient intercalation/deintercalation of Mg at the electrodes while facilitating a fast transfer of Mg between the two electrodes. As a result, the system delivers a high capacity of ∼120.3 mAh g at a current density of 0.5 A g after 200 operation cycles with a broadened voltage range (0-1.95 V) and maintains a capacity of ∼97.8 mAh g at 2.0 A g after 1000 cycles. Even at a high current density of 5.0 A g, the battery provides a steady capacity of ∼81.4 mAh g over 5000 cycles. Moreover, after being applied at 11.0 A g, the system can deliver a capacity of ∼126.5 mAh g at 0.5 A g. This work emphasizes the great promise of developing suitable electrode couples for aqueous MIFBSs to achieve high capacity and high rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c06106 | DOI Listing |
Enzyme Microb Technol
January 2025
Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:
There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.
As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!