Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio rerio).

Aquat Toxicol

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China. Electronic address:

Published: August 2021

Metamifop (MET) is an effective herbicide that has been extensively used in paddy fields. Previous research demonstrated that MET was highly toxic to zebrafish embryos, and this threat has caused great concern; moreover, 0.40 mg/L MET elevated the hepatosomatic index (HSI) in adult zebrafish without lethal effect after 21 d of exposure. In this study, we further determined the detailed impacts of MET on adult zebrafish at sublethal concentrations (0.025, 0.10 and 0.40 mg/L). We found that 0.40 mg/L MET caused liver injury by increasing the activity of aspartate aminotransferase and alanine aminotransferase in plasma, the content of interleukin-1β, IL-6, tumor necrosis factor-α, and mRNA expression level of genes associated with inflammatory response in liver of adult zebrafish. The hepatic triglyceride (TG), free fatty acid and fatty acid synthase levels were significantly elevated in 0.40 mg/L MET-treated group (1.55-, 2.20- and 2.30-fold, respectively), and the transcript of lipid accumulation-related genes (fabp10, fas, acc, chrebp, dagt2 and agpat4) were upregulated. Meanwhile, the total cholesterol content was decreased by 0.48-fold, bile acid level was increased by 2.44-fold, and levels of cholesterol metabolism-related genes (apoa-1a, hmgcra, cyp51, dhcr7 and cyp7a1) were increased, suggesting cholesterol metabolism disorder occurred in zebrafish. Furthermore, analysis of lipidomics revealed that 0.40 mg/L MET significantly increased the abundance of 91 lipids, which mainly belonged to TG lipid class and were enriched in pathways of glycerolipid metabolism, cholesterol metabolism, etc. These results suggested that MET exposure at sublethal concentrations would induce hepatic inflammation and lipid metabolism disorders in adult zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105938DOI Listing

Publication Analysis

Top Keywords

adult zebrafish
20
040 mg/l
20
mg/l met
12
lipid metabolism
8
sublethal concentrations
8
fatty acid
8
cholesterol metabolism
8
zebrafish
7
met
7
metabolism
5

Similar Publications

Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.

View Article and Find Full Text PDF

Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Toxic effects of chlorantraniliprole on zebrafish (Danio rerio) at different developmental stages under antibiotic pressure.

Environ Pollut

December 2024

Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China. Electronic address:

Pesticides and antibiotics have been frequently reported in the environment, but it remains unclear whether antibiotics affect the toxicity of pesticides to aquatic organisms. In this study, the acute, developmental and reproductive toxicity effects of the pesticide chlorantraniliprole on zebrafish at different developmental stages under pressure of ciprofloxacin and erythromycin at environmental concentration were explored. Chlorantraniliprole, ciprofloxacin, and erythromycin are all low toxic to zebrafish (LC > 100 mg/L), and environmental concentrations of antibiotics have no effect on the acute toxicity of chlorantraniliprole to zebrafish.

View Article and Find Full Text PDF

The intricate control of collective cell dynamics is crucial for enabling organismic development and tissue regeneration. Despite the availability of various in vitro and in vivo models, studies on tissue-scale cell dynamics and associated emergent properties in living systems remain methodically challenging. Here, we describe key advantages of using the adult zebrafish tailfin (caudal fin) as a robust in vivo model for dissecting millimeter-scale collective cell dynamics during regeneration and wound healing in a complex tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!