Electrochemically engineered zinc(iron)oxyhydroxide/zinc ferrite heterostructure with interfacial microstructure and hydrophilicity ideal for supercapacitors.

J Colloid Interface Sci

Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea. Electronic address:

Published: January 2022

Zinc ferrite@nickel foam (ZF@Nf) is a potential commercial supercapacitor electrode due to its large theoretical capacity, abundant elemental composition, excellent conductivity, and stability. However, deficient active sites limit its specific capacitance (SC). Herein, we demonstrate that engineering ZF's interfacial microstructure and hydrophilicity mitigate this limitation. ZF@Nf is used as the working electrode in a 3-electrode cell and subjected to multiple oxygen evolution reaction cycles in potassium hydroxide. Systematic changes in ZF's porosity, crystallinity, hydrophilicity, and composition after each cycle were characterised using spectroscopy, sorption isotherm, microscopy and photography techniques. During cycling, the edges of ZF partially phase-transform into a dense polycrystalline zinc(iron)oxyhydroxide film via semi-reversible oxidation resulting in zinc(iron)oxyhydroxide/ZF interface formation. The maximum ion-accessible zinc(iron)oxyhydroxide film density is obtained after 1000 cycles. Strong ionic interaction at the interface induces high hydrophilicity, this together with the 3-dimensional diffusion channels of the zinc(iron)oxyhydroxide significantly increase electroactive surface area and decrease ion diffusion resistance. Consequently, the SC, energy density, and rate-capability of the interface compare favourably with state-of-the-art electrodes. The strong interfacial interaction and polycrystallinity also ensure long-term electrochemical stability. This study proves the direct correlation between interfacial microstructure and hydrophilicity, and SC which provides a blueprint for future energy-storage electrode design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.08.053DOI Listing

Publication Analysis

Top Keywords

interfacial microstructure
12
microstructure hydrophilicity
12
zincironoxyhydroxide film
8
hydrophilicity
5
electrochemically engineered
4
engineered zincironoxyhydroxide/zinc
4
zincironoxyhydroxide/zinc ferrite
4
ferrite heterostructure
4
interfacial
4
heterostructure interfacial
4

Similar Publications

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

Study of the Influence of Desert Sand-Mineral Admixture on the Abrasion Resistance of Concrete.

Materials (Basel)

January 2025

College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.

The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.

View Article and Find Full Text PDF

To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.

View Article and Find Full Text PDF

Bonding materials with high thermal and electrical conductivity and reliable resistance to thermal stress are required. The authors have been conducting fundamental research on sintering-type bonding, in which metal micro-fillers are low-temperature sintered in the resin-bonded type electrically conductive adhesives (ECAs), as a new bonding technology, with the aim of easing thermal stress through the resin binder. This study investigated the influence of the kind of additive diluent in epoxy-based ECAs containing silver (Ag) micro-flakes on the microstructure development in the adhesives and the connection properties to metal electrodes.

View Article and Find Full Text PDF

Interaction between Hydrogen and Magnesium Films: From Hydrogenochromism to Applications.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Hydrogen, as a promising clean energy carrier, underscores the critical need for reliable detection technologies to ensure its safe and efficient use. Magnesium (Mg) thin films, with their hydrogenochromic properties, are particularly well-suited for hydrogen sensing applications due to their dramatic optical transitions. However, practical implementation faces challenges in achieving both rapid response and durability under cyclic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!