Biocompatible coating based on bovine serum albumin (BSA) was applied on two different TiO nanoparticles (aeroxide P25 and food grade E171) to investigate properties and stability of resulting TiO@BSA composites, under the final perspective to create a "Safe-by-Design" coating, able to uniform, level off and mitigate surface chemistry related phenomena, as naturally occurring when nano-phases come in touch with proteins enriched biological fluids. The first step towards validating the proposed approach is a detailed characterization of surface chemistry with the quantification of amount and stability of BSA coating deposited on nanoparticles' surfaces. At this purpose, we implemented an orthogonal multi-techniques characterization platform, providing important information on colloidal behavior, particle size distribution and BSA-coating structure of investigated TiO systems. Specifically, the proposed orthogonal approach enabled the quantitative determination of bound and free (not adsorbed) BSA, a key aspect for the design of intentionally BSA coated nano-structures, in nanomedicine and, overall, for the control of nano-surface reactivity. In fact, the BSA-coating strategy developed and the orthogonal characterisation performed can be extended to different designed nanomaterials in order to further investigate the protein-corona formation and promote the implementation of BSA engineered coating as a strategy to harmonize the surface reactivity and minimize the biological impact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112037DOI Listing

Publication Analysis

Top Keywords

orthogonal multi-techniques
8
multi-techniques characterization
8
characterization platform
8
surface chemistry
8
bsa
5
tio@bsa nano-composites
4
nano-composites investigated
4
orthogonal
4
investigated orthogonal
4
platform biocompatible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!