Our goal was to evaluate the effects of EC refill fluids and EC exhaled aerosol residue (ECEAR) on cultured human keratinocytes and MatTek EpiDerm™, a 3D air liquid interface human skin model. Quantification of flavor chemicals and nicotine in Dewberry Cream and Churrios refill fluids was done using GC-MS. The dominant flavor chemicals were maltol, ethyl maltol, vanillin, ethyl vanillin, benzyl alcohol, and furaneol. Cytotoxicity was determined with the MTT and LDH assays, and inflammatory markers were quantified with ELISAs. Churrios was cytotoxic to keratinocytes in the MTT assay, and both fluids induced ROS production in the medium (ROS-Glo™) and in cells (CellROX). Exposure of EpiDerm™ to relevant concentrations of Dewberry Cream and Churrios for 4 or 24 h caused secretion of inflammatory markers (IL-1α, IL-6, and MMP-9), without altering EpiDerm™ histology. Lab made fluids with propylene glycol (PG) or PG plus a flavor chemical did not produce cytotoxic effects, but increased secretion of IL-1α and MMP-9, which was attributed to PG. ECEAR derived from Dewberry Cream and Churrios did not produce cytotoxicity with Epiderm™, but Churrios ECEAR induced IL-1α secretion. These data support the conclusion that EC chemicals can cause oxidative damage and inflammation to human skin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627378 | PMC |
http://dx.doi.org/10.1016/j.tiv.2021.105234 | DOI Listing |
Toxicol In Vitro
December 2021
Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, CA, United States. Electronic address:
Our goal was to evaluate the effects of EC refill fluids and EC exhaled aerosol residue (ECEAR) on cultured human keratinocytes and MatTek EpiDerm™, a 3D air liquid interface human skin model. Quantification of flavor chemicals and nicotine in Dewberry Cream and Churrios refill fluids was done using GC-MS. The dominant flavor chemicals were maltol, ethyl maltol, vanillin, ethyl vanillin, benzyl alcohol, and furaneol.
View Article and Find Full Text PDFChemosphere
January 2022
Department of Molecular, Cell & Systems Biology University of California, Riverside, Riverside, CA, USA. Electronic address:
Background: Given the high concentrations of nicotine and flavor chemicals in EC (electronic cigarette) fluids, it is important to determine how efficiently they transfer to aerosols, how well they are retained by users (exposure), and if they are exhaled into the environment where they settle of surfaces forming ECEAR (EC exhaled aerosol residue).
Objectives: To quantify the flavor chemicals and nicotine in refill fluids, inhaled aerosols, and exhaled aerosols. Then deduce their retention and contribution to ECEAR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!