Ongoing neural activity, which represents internal brain states, is constantly modulated by the sensory information that is generated by the environment. In this study, we show that the habenular circuits act as a major brain hub integrating the structured ongoing activity of the limbic forebrain circuitry and the olfactory information. We demonstrate that ancestral homologs of amygdala and hippocampus in zebrafish forebrain are the major drivers of ongoing habenular activity. We also reveal that odor stimuli can modulate the activity of specific habenular neurons that are driven by this forebrain circuitry. Our results highlight a major role for the olfactory system in regulating the ongoing activity of the habenula and the forebrain, thereby altering brain's internal states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445323 | PMC |
http://dx.doi.org/10.1016/j.cub.2021.08.021 | DOI Listing |
Curr Biol
September 2021
Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway; Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium. Electronic address:
Ongoing neural activity, which represents internal brain states, is constantly modulated by the sensory information that is generated by the environment. In this study, we show that the habenular circuits act as a major brain hub integrating the structured ongoing activity of the limbic forebrain circuitry and the olfactory information. We demonstrate that ancestral homologs of amygdala and hippocampus in zebrafish forebrain are the major drivers of ongoing habenular activity.
View Article and Find Full Text PDFSemin Cell Dev Biol
June 2018
Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway. Electronic address:
The habenula is a brain region that has gained increasing popularity over the recent years due to its role in processing value-related and experience-dependent information with a strong link to depression, addiction, sleep and social interactions. This small diencephalic nucleus is proposed to act as a multimodal hub or a switchboard, where inputs from different brain regions converge. These diverse inputs to the habenula carry information about the sensory world and the animal's internal state, such as reward expectation or mood.
View Article and Find Full Text PDFJ Comp Neurol
April 1999
Institut für Anatomie, Abteilung Neuroanatomie der Ruhr Universität, Bochum, Germany.
The habenular complexes represent phylogenetically constant structures in the diencephalon of all vertebrates. Available evidence suggests that this area is engaged in a variety of important biological functions, such as reproductive behaviors, central pain processing, nutrition, sleep-wake cycles, stress responses, and learning. Based on Nissl-stained sections, one medial nucleus and two lateral nuclei (divisions) have been widely accepted in the rat.
View Article and Find Full Text PDFBrain Res
May 1992
Department of Medical Cell Research, University of Lund, Sweden.
Dopamine (DA) and noradrenaline (NA) extracellular levels have been measured by microdialysis in the medial frontal cortex (MFC), nucleus accumbens (NAc) and caudate-putamen (CP) under baseline conditions in awake and halothane-anaesthetized rats, and after application of three types of stimuli which are likely to activate the brainstem catecholaminergic systems: mild stressors (handling and tail pinch), rewarded behavior (eating palatable food without prior food deprivation) and electrical stimulation of the lateral habenular nucleus. Changes were studied with and without uptake blockade (10 microM nomifensine in the perfusion fluid). The influence of calcium concentration (1.
View Article and Find Full Text PDFNeuroscience
November 1990
Department of Medical Cell Research, Section of Neurobiology, Lund, Sweden.
Changes in extracellular levels of acetylcholine and choline in the hippocampal formation were measured using intracerebral microdialysis coupled to high performance liquid chromatography with post-column enzyme reaction and electrochemical detection. Various pharmacological and physiological manipulations were applied to awake unrestrained normal rats and rats subjected to a cholinergic denervation of the hippocampus by a complete fimbria-fornix lesion (1-2 weeks previously). Low baseline levels of acetylcholine (about 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!