In the present research, magnetically recyclable polyphosphazene (PCTP)/Ag (MPCTP-Ag) nanoparticles are prepared by a green path, in which PCTP was used to modify FeO nanoparticles and provide nucleation sites for the reduction of Ag nanoparticles. The prepared MPCTP-Ag nanoparticles were characterized by TEM, SEM, EDS, BET, XRD, vibrating sample magnometry, XPS, and TGA analysis. The catalytic performances of the MPCTP-Ag nanoparticles for the degradation of 4-nitrophenol (4-NP), methylene blue (MB), methyl orange (MO), and their mixtures in the presence of NaBH were studied. The main factors affecting the catalytic performance, including temperature, reactant concentration, and catalyst dosage, were investigated. The results showed that the MPCTP-Ag nanoparticles exhibited excellent catalytic activity for the degradation of all three targeted organic contaminants (4-NP, MB, and MO). Moreover, the product retains its catalytic activity after being reused five times by magnetic separation. The results showed that MPCTP-Ag composite nanoparticles were efficient recyclable magnetic nanocatalysts with promising application in environment protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c00944 | DOI Listing |
Langmuir
August 2021
College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
In the present research, magnetically recyclable polyphosphazene (PCTP)/Ag (MPCTP-Ag) nanoparticles are prepared by a green path, in which PCTP was used to modify FeO nanoparticles and provide nucleation sites for the reduction of Ag nanoparticles. The prepared MPCTP-Ag nanoparticles were characterized by TEM, SEM, EDS, BET, XRD, vibrating sample magnometry, XPS, and TGA analysis. The catalytic performances of the MPCTP-Ag nanoparticles for the degradation of 4-nitrophenol (4-NP), methylene blue (MB), methyl orange (MO), and their mixtures in the presence of NaBH were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!