Intrinsically disordered proteins (IDPs) do not autonomously fold into well-defined three-dimensional structures and are best described as a heterogeneous ensemble of rapidly interconverting conformers. It is challenging to elucidate their complex dynamic signatures using a single technique. In this study, we employed sensitive fluorescence depolarization kinetics by following picosecond time-resolved fluorescence anisotropy decays to directly capture the essential dynamical features of intrinsically disordered α-synuclein (α-syn) site-specifically labeled with thiol-active fluorophores. By utilizing a long-lifetime (≥10 ns) anisotropic label, we were able to discern three distinct rotational components of α-syn. The subnanosecond component represents the local wobbling-in-cone motion of the fluorophore, whereas the slower (∼1.4 ns) component corresponds to the short-range backbone dynamics governed by collective torsional fluctuations in the Ramachandran Φ-Ψ dihedral space. This backbone dihedral rotational time scale is sensitive to the local chain stiffness and slows down in the presence of an adjacent proline residue. We also observed a small-amplitude (≤10%) slower rotational correlation time (6-10 ns) that represents the long-range correlated dynamics involving a much longer segment of the polypeptide chain. These intrinsic dynamic signatures of IDPs will provide critical mechanistic underpinnings in a mosaic of biophysical phenomena involving internal friction, allosteric interactions, and phase separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c04426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!