Comprehensive feature-based molecular networking and metabolomics approaches to reveal the differences components in Cinnamomum cassia and Cinnamomum verum.

J Sep Sci

Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.

Published: October 2021

Cinnamon was been a widely used plant in medicinal and spices for a long time and has spread all over the world. However, the differences in the components of the bark from Cinnamomum cassia and Cinnamomum verum, the two most common types of cinnamon, have not been thoroughly investigated. In the present experiment, ultra-high-performance liquid chromatography LTQ-Orbitrap Velos Pro hybrid mass spectrometer-based metabolomics coupled with chemometrics and feature-based molecular networking were employed to dramatically distinguish and annotate Cinnamomum cassia Bark and Cinnamomum verum bark. As a consequence, principal component analysis, orthogonal projection to latent structures discriminates analysis, and heat map analysis demonstrated clear discrimination between the profiles of metabolites in cinnamon. Besides, as the known compounds, proanthocyanidins (cinnamtannin B1 and procyanidin B2) and alkaloids (norboldine, norisoboldine) with variable importance in the projection scores >6, and an unknown alkaloid (formula C H NO ) were selected as the best markers to discriminate cinnamon. Furthermore, large numbers of proanthocyanidins and alkaloids components were identified through feature-based molecular networking for the first time. Our investigation provides new ideas for the discovery of quality markers and identification of unknown components in natural products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202100399DOI Listing

Publication Analysis

Top Keywords

feature-based molecular
12
molecular networking
12
cinnamomum cassia
12
cinnamomum verum
12
differences components
8
cassia cinnamomum
8
bark cinnamomum
8
cinnamomum
6
comprehensive feature-based
4
networking metabolomics
4

Similar Publications

Mining of antioxidant sesquiterpene lactones from the aerial parts of Saussurea involucrata with feature-based molecular network strategy.

Bioorg Chem

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Electronic address:

Sesquiterpene lactones (SLs) are a class of natural products with diverse structural scaffoldings and biological activities, making them intriguing objects in the fields of pharmaceutical industry, drug development, and pharmacology. Herein, fifteen SLs, including eleven undescribed SLs compounds sauruintones A-K (1-8 and 13-15), were isolated and identified from the aerial parts of Saussurea involucrata. Their structures were characterized by using mass spectrometry, spectroscopic methods, computational calculations, and single crystal X-ray diffraction.

View Article and Find Full Text PDF
Article Synopsis
  • Boron-dipyrromethene (BODIPY) compounds have valuable optical properties and are used in various fields like imaging and electronics; to enhance their design, understanding the link between their structures and optical properties is essential.
  • A machine learning-based model was developed, showing high predictive accuracy for the BODIPY compounds' maximum absorption wavelength, proving its effectiveness through strong correlation coefficients.
  • The study used computational chemistry methods to optimize BODIPY structures and employed machine learning techniques to analyze 131 compounds, highlighting the significance of molecular characteristics like branching and specific functional groups in determining their properties.
View Article and Find Full Text PDF

Systematically identifying the chemical constituents in complex matrices is a challenge due to the inherent characteristics of compounds. The combination of liquid chromatography-tandem mass spectrometry (LC-MS) and classical molecular networking (CLMN) is a powerful technology for annotating small molecules. However, the low coverage from inappropriate acquisition modes and the inseparability of isomeric compound nodes still hinders the comprehensive metabolite characterization.

View Article and Find Full Text PDF

Antiprotozoal Natural Products from Endophytic Fungi Associated with Cacao and Coffee.

Metabolites

October 2024

Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá 0843-01103, Panama.

Background: Collectively, leishmaniasis and Chagas disease cause approximately 8 million cases and more than 40,000 deaths annually, mostly in tropical and subtropical regions. The current drugs used to treat these diseases have limitations and many undesirable side effects; hence, new drugs with better clinical profiles are needed. Fungal endophytes associated with plants are known to produce a wide array of bioactive secondary metabolites, including antiprotozoal compounds.

View Article and Find Full Text PDF
Article Synopsis
  • * A total of 53 compounds were annotated, including 22 newly discovered analogues and 4 new homologous series, suggesting significant diversity in crambescin compounds.
  • * The research highlights the effectiveness of combining manual and computational methods for detailed metabolomic analysis, underscoring its potential for high-throughput identification in similar studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!