Combinatorial antitumor effects of amino acids and epigenetic modulations in hepatocellular carcinoma cell lines.

Naunyn Schmiedebergs Arch Pharmacol

Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.

Published: November 2021

Hepatocellular carcinoma (HCC) is a highly fatal form of liver cancer. Recently, the interest in using amino acids as therapeutic agents has noticeably grown. The present work aimed to evaluate the possible antiproliferative effects of selected amino acids supplementation or deprivation in human HCC cell lines and to investigate their effects on critical signaling molecules in HCC pathogenesis and the outcomes of their combination with the histone deacetylase inhibitor vorinostat. HepG2 and Huh7 cells were treated with different concentrations of L-leucine, L-glutamine, or L-methionine and cell viability was determined using MTT assay. Insulin-like growth factor 1 (IGF1), phosphorylated ribosomal protein S6 kinase (p70 S6K), p53, and cyclin D1 (CD1) protein levels were assayed using ELISA. Caspase-3 activity was assessed colorimetrically. L-leucine supplementation (0.8-102.4 mM) and L-glutamine supplementation (4-128 mM) showed dose-dependent antiproliferative effects in both cell lines but L-methionine supplementation (0.2-25.6 mM) only affected the viability of HepG2 cells. Glutamine or methionine deprivation suppressed the proliferation of HepG2 cells whereas leucine deprivation had no effect on cell viability in both cell lines. The combination between the effective antiproliferative changes in L-leucine, L-glutamine, and L-methionine concentrations greatly suppressed cell viability and increased the sensitivity to vorinostat in both cell lines. The growth inhibitory effects were paralleled with significant decreases in IGF-1, phospho p70 S6k, and CD1 levels and significant elevations in p53 and caspase-3 activity. Changes in amino acids concentrations could profoundly affect growth in HCC cell lines and their response to epigenetic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-021-02140-zDOI Listing

Publication Analysis

Top Keywords

cell lines
24
amino acids
16
cell viability
12
cell
9
hepatocellular carcinoma
8
antiproliferative effects
8
hcc cell
8
l-leucine l-glutamine
8
l-glutamine l-methionine
8
p70 s6k
8

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.

View Article and Find Full Text PDF

Objective: Our study aimed to investigate the therapeutic effects of the Kuntai capsule in improving ovarian function in rats with transplantation of cryopreserved ovary.

Methods: Two mice ovary cell lines were cultured with Kuntai capsule decoction, and cell apoptosis was detected by MTT assay. A total of 90 SPF Sprague Dawley rats were included in this study.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!