Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with a poor prognosis and a high recurrence rate. gene is frequently mutated in breast cancer, with as the hotspot mutation reported in TNBC. We used the ZINC database to screen natural compounds that could be structurally modified to develop drugs targeting the PIK3CA H1047R mutant protein in the PI3K pathway. The LibDock module showed that 2,749 compounds could strongly bind to the PIK3CA H1047R protein. Ultimately, the top 20 natural ligands with high LibDock scores were used for further analyses including assessment of ADME (absorption, distribution, metabolism, and excretion), toxicity, stability, and binding affinity. ZINC000004098448 and ZINC000014715656 were selected as the safest drug candidates with strong binding affinity to PIK3CA H1047R, no hepatotoxicity, less carcinogenicity, better plasma protein binding (PPB) properties, and enhanced intestinal permeability and absorption than the two reference drugs, PKI-402 and wortmannin. Moreover, their lower potential energies than those of PIK3CA H1047R confirmed the stability of the ligand-receptor complex under physiological conditions. ZINC000004098448 and ZINC000014715656 are thus safe and stable leads for designing drugs against PIK3CA H1047R as part of a targeted therapeutic approach for patients with TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436935PMC
http://dx.doi.org/10.18632/aging.203409DOI Listing

Publication Analysis

Top Keywords

pik3ca h1047r
24
breast cancer
12
binding affinity
8
zinc000004098448 zinc000014715656
8
pik3ca
6
h1047r
6
identification effective
4
effective natural
4
natural pik3ca
4
h1047r inhibitors
4

Similar Publications

Ameloblastoma is a rare tumor arising from odontogenic cells that is benign, yet locally aggressive. Metastasizing ameloblastoma (METAM) is an ultra-rare ameloblastoma variant in which both primary and secondary tumors have histological features of benign ameloblastoma. This is a case report of a patient who presented with a jaw mass and subsequent lung metastases, later diagnosed as METAM.

View Article and Find Full Text PDF

Comprehensive genomic profiling (CGP) is increasingly used as a clinical laboratory test and being applied to cancer treatment; however, standardization and external quality assessments (EQA) have not been fully developed. This study performed cost-effective EQA and proficiency tests (PT) for CGP testing among multiple institutions those belong to the EQA working group of Japan Association for Clinical Laboratory Science (JACLS). This study revealed that preanalytical processes, such as derived nucleic acids (NA) extraction from formalin fixed paraffine embedded (FFPE) samples, are critical.

View Article and Find Full Text PDF
Article Synopsis
  • The study compares the effectiveness of ultrasensitive real-time PCR and droplet digital PCR (ddPCR) in detecting specific mutations associated with breast cancer in primary tumors and liquid biopsy samples.
  • The research involved analyzing genetic material from 42 tumor samples and 29 plasma samples from patients with ER+ metastatic breast cancer, as well as samples from healthy donors.
  • Results showed that both methods provided similar detection rates for certain mutations in tumor samples, with ultrasensitive real-time PCR performing better in plasma-cfDNA samples, indicating potential for non-invasive testing in cancer management.
View Article and Find Full Text PDF

PIK3CA mutation fortifies molecular determinants for immune signaling in vascular cancers.

Cancer Gene Ther

December 2024

Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.

Angiosarcomas are a group of vascular cancers that form malignant blood vessels. These malignancies are seemingly inflamed primarily due to their pathognomonic nature, which consists of irregular endothelium and tortuous blood channels. PIK3CA mutations are oncogenic and disrupt the PI3K pathway.

View Article and Find Full Text PDF

Oncogenic PIK3CA corrupts growth factor signaling specificity.

Mol Syst Biol

December 2024

Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK.

Technical limitations have prevented understanding of how growth factor signals are encoded in distinct activity patterns of the phosphoinositide 3-kinase (PI3K)/AKT pathway, and how this is altered by oncogenic pathway mutations. We introduce a kinetic, single-cell framework for precise calculations of PI3K-specific information transfer for different growth factors. This features live-cell imaging of PI3K/AKT activity reporters and multiplexed CyTOF measurements of PI3K/AKT and RAS/ERK signaling markers over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!