Phonon polaritons (PhPs) in van der Waals (vdW) crystal slabs enable nanoscale infrared light manipulation. Specifically, periodically structured vdW slabs behave as polaritonic crystals (vdW-PCs), where the polaritons form Bloch modes. Because the polariton wavelengths are smaller than that of light, conventional far-field spectroscopy does not allow for a complete characterization of vdW-PCs or for revealing their band structure. Here, we perform hyperspectral infrared nanoimaging and analysis of PhPs in a vdW-PC slab made of h-BN. We demonstrate that infrared spectra recorded at individual spatial positions within the unit cell of the vdW-PC can be associated with its band structure and local density of photonic states (LDOS). We thus introduce hyperspectral infrared nanoimaging as a tool for the comprehensive analysis of polaritonic crystals, which could find applications in the reconstruction of complex polaritonic dispersion surfaces in momentum-frequency space or for exploring exotic electromagnetic modes in topological photonic structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c01452DOI Listing

Publication Analysis

Top Keywords

polaritonic crystals
12
van der
8
der waals
8
band structure
8
hyperspectral infrared
8
infrared nanoimaging
8
hyperspectral nanoimaging
4
nanoimaging van
4
polaritonic
4
waals polaritonic
4

Similar Publications

Modulation of surface phonon polaritons in MoO via dynamic doping of SiC substrate.

Nanophotonics

January 2025

Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Madrid, 28040 Spain.

Polar biaxial crystals with extreme anisotropy hold promise for the spatial control and the manipulation of polaritons, as they can undergo topological transitions. However, taking advantage of these unique properties for nanophotonic devices requires to find mechanisms to modulate dynamically the material response. Here, we present a study on the propagation of surface phonon polaritons (SPhPs) in a photonic architecture based on a thin layer of α-MoO deposited on a semiconducting 4H-SiC substrate, whose carrier density can be tuned through photoinduction.

View Article and Find Full Text PDF

Optical cavity enhancement of visible light-driven photochemical reaction in the crystalline state.

Chem Commun (Camb)

January 2025

Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Hokkaido 001-0020, Japan.

Photochemical reactions enable the synthesis of energetically unfavorable compounds but often require irradiation with ultraviolet light, which potentially induces side reactions. Here, cavity strong coupling enhances the efficiency of an all-solid state photocyclization in crystals of 2,4-dimethoxy-β-nitrostyrene under irradiation with visible light. The exposure to visible light facilitates photocyclization by the transition to a lower polaritonic state, which is energetically lower than the original transition state.

View Article and Find Full Text PDF

Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Article Synopsis
  • Strong coupling between nanocavities and single excitons at room temperature is crucial for studying cavity quantum electrodynamics, influenced by factors like light confinement and electric field orientation.
  • A hybrid cavity design combining a one-dimensional photonic crystal and plasmonic nanocavity enhances quality factor, minimizes mode volume, and allows control of electric field direction using Bloch surface waves.
  • Achieving a Rabi splitting of around 186 meV with only 8 excitons involved marks a significant advance, producing an effective coupling strength of 17.6 meV per exciton, which is nearly double the previously reported values for TMD-based systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!