Global climate change has significantly changed precipitation patterns. Soil respiration (SR), as an important pathway through which CO is released from the soil carbon pool into the atmosphere, may affect the carbon cycle process of terrestrial ecosystems and have a feedback effect on global climate change in response to precipitation change. However, at present there is limited understanding of how SR is affected by precipitation change. Field precipitation control experiments were conducted (with -40%, -20%, natural, 20%, and 40% precipitation) on desert grassland in the west of the Loess Plateau, to investigate the influence of precipitation change on SR dynamics and its relationship with soil water content, soil temperature, aboveground biomass, soil organic carbon, microbial biomass carbon, carbon-nitrogen ratio, and other factors. The results show that the diurnal variations of SR under different precipitation treatments were consistent in unimodal and bimodal models over three years. SR showed an increasing trend with added precipitation, relative to the control, and significant differences were observed between the second year (wetter) and the third year (drier) of the precipitation-manipulation experiment, indicating that precipitation changes had a legacy effect on SR. At the same time, SR was lowest under the -40% treatment and highest under the 40% treatment during the wetter year. The negative response of SR to precipitation exclusion treatments was stronger than the positive response to precipitation addition treatments. SR in drier years was significantly higher under precipitation addition treatments than the control, and the positive response of SR to increased precipitation treatment was significantly stronger than that under decreased precipitation treatment. In addition, soil water content, aboveground biomass, soil organic carbon, and carbon-nitrogen ratio were the environmental factors that obviously affected SR and increased with additional precipitation. SR increased with increases in soil water content, aboveground biomass, soil organic carbon, and carbon-nitrogen ratio, but decreased with increases in microbial biomass carbon. Among these factors, soil water content had the highest interpretation rate for SR, indicating that soil water content was the main environmental factor controlling SR in desert grassland. In both wetter and drier years, the amplitude of plant biomass input was lower than the amplitude of SR output under precipitation change, indicating that precipitation change may be unfavorable to soil carbon sequestration, especially in drier years, when precipitation change has a stronger influence on carbon pool output. Therefore, precipitation changes on SR in desert grassland in various dry and wet years may have different influences on the carbon cycle process of ecosystems, thus providing a reference for regional carbon budget assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202012204 | DOI Listing |
J Econ Entomol
January 2025
Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China.
The Anoplophora chinensis (Coleoptera: Cerambycidae) (Forster), a serious phytophagous pest threatening Castanea mollissima Blume and Castanea seguinii Dode, poses risks of ecological imbalance, significant economic loss, and increased management difficulties if not properly controlled. This study employs optimized MaxEnt models to analyze the potential distribution areas of A. chinensis and its host plants under current and future climate conditions, identifying their movement pathways and relative dynamics.
View Article and Find Full Text PDFEcol Lett
January 2025
Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
Previous studies have primarily focused on single abrupt shifts; however, the actual ecosystem will experience continuous abrupt shifts (CAS), including different directions shifts (DDS) and same direction shifts (SDS). The patterns and drivers of these CAS remain unclear. We examined the patterns of the DDS and SDS by two vegetation datasets and then tested climate drivers comprising atmospheric temperature (MAT), atmospheric precipitation (MAP), soil temperature (ST) and soil water content (SW); finally, hysteresis effects were examined with reference to principal drivers.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, Stanford University, Stanford, California, USA.
Predicting the effects of climate change on plant disease is critical for protecting ecosystems and food production. Here, we show how disease pressure responds to short-term weather, historical climate and weather anomalies by compiling a global database (4339 plant-disease populations) of disease prevalence in both agricultural and wild plant systems. We hypothesised that weather and climate would play a larger role in disease in wild versus agricultural plant populations, which the results supported.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
Background: Proso millet bran protein (PMBP), derived from agricultural by-products, possesses high nutritional value, despite its challenging extraction process. The present study proposes an extraction method for PMBP using ultrasound-assisted cellulase technology (UAE), and optimizes the process parameters. Non-waxy (N-PMBP) and waxy (W-PMBP) PMBPs, extracted through alkaline solubilization and acid precipitation (conventional treatment, CT), served as control groups to assess the impact of UAE on the structure and functionality of PMBP, as well as the distinctions between N-PMBPs and W-PMBPs.
View Article and Find Full Text PDFData Brief
February 2025
Great Lakes Forestry Centre, Natural Resources Canada, 1219 Queen Street East, Sault Ste Marie, Ontario P6A 2E5, Canada.
Geospatial climate change projections are critical for assessing climate change impacts and adaptations across a wide range of disciplines. Here we present monthly-based grids of climate change projections at a 2-km resolution covering Canada and the United States. These data products are based on outputs from the 6th Coupled Model Intercomparison Project (CMIP6) and include projections for 13 General Circulation Models (GCMs), three Shared Socio-economic Pathways (SSP1 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!