[Effect of Anaerobic Plug-flow on Nitrification Denitrifying Phosphorus Removal Aerobic Granular Sludge with Intermittent Aeration].

Huan Jing Ke Xue

Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.

Published: September 2021

Actual domestic sewage has a complex composition and relatively low carbon and nitrogen content. Anaerobic plug-flow influent can enhance the utilization of COD by aerobic granular sludge by providing a locally high concentration of substrate. In this study, intermittent aeration was used to cultivate aerobic granular sludge in a sequencing batch reactor (SBR), and actual domestic sewage was used as the feed water to inoculate the sewage plant sludge. In the R1 experiment, rapid anaerobic feeding was adopted, while in R2, anaerobic plug-flow feeding was adopted, to explore the impact of different feeding modes on the aerobic granular sludge system of domestic sewage. Under rapid anaerobic feeding in R1, the particle structure appeared earlier, but particle breakage occurred after 71 days of operation; the particle structure generated in R2 was denser than that of R1, the particle surfaces were smoother, and the denitrifying phosphorous accumulating organisms (DPAO) had a more enriching effect. In the final R1 and R2 reactors, the proportion of DPAO to phosphorous accumulating organisms (PAO) was 14.17% and 22.07%, respectively. The results show that the anaerobic plug-flow feeding mode can enhance the use of influent COD by granular sludge, which is conducive to enriching DPAO, generating denser and more stable particles, realizing "one carbon dual purpose" operation, and removing more nitrogen and phosphorus.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202102016DOI Listing

Publication Analysis

Top Keywords

granular sludge
20
anaerobic plug-flow
16
aerobic granular
16
domestic sewage
12
actual domestic
8
rapid anaerobic
8
anaerobic feeding
8
feeding adopted
8
plug-flow feeding
8
particle structure
8

Similar Publications

Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

January 2025

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou International Cooperation Base for Science and Technology on Carbon Neutrality of Organic Solid Waste Conversion, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.

View Article and Find Full Text PDF

Iron-loaded diatomite (Fe-DE) was developed as the innovative material to enhance anammox granular sludge (AnGS) and mainstream anammox performance. By adding Fe-DE with the Fe:DE ratio of 1:20 and the dosage of 3 g/L, the start-up period of mainstream anammox process was shortened from 29 d to 17 d and its nitrogen removal rate was increased from 0.234 kg N/(m·d) to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!