A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Mutual Influence Between Microbial Community, Wastewater Characteristics, and Antibiotic Resistance Genes During Spiramycin Production Wastewater Treatment]. | LitMetric

[Mutual Influence Between Microbial Community, Wastewater Characteristics, and Antibiotic Resistance Genes During Spiramycin Production Wastewater Treatment].

Huan Jing Ke Xue

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: September 2021

Wastewater from antibiotic production usually contains a huge amount of antibiotic resistance genes (ARG). Therefore, it is essential to study the dissemination and control of antibiotic resistance during the treatment of antibiotic production wastewater. The mutual influence between microbial community evolution, wastewater characteristics, and ARG was investigated using high-throughput sequencing and a variety of statistical analysis methods. Results showed that the influent characteristics had only a marginal influence on the microbial community of each treatment section. Methanogenic bacteria and sulfate-reducing bacteria were the dominant microbes in the anaerobic and anoxic tank. Chemical oxygen demand (COD), NO-N, and PO-P exhibited an intimate relationship with the microbial community, whereas biomass, NH-N, and COD showed a strong correlation with ARG and mobile genetic elements (MGE). In the sludge, more genera (including pathogenic bacteria) were significantly correlated with ARG and MGE than that in the wastewater, indicating that bacteria in the sludge had a greater chance of acquiring pathogenicity and resistance. Therefore, more attnetion should be given to waste sludge from the treatment plants of antibiotic production wastewater. This research could provide further understanding of antibiotic resistance dissemination and control during wastewater treatment, especially for antibiotic production wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202101086DOI Listing

Publication Analysis

Top Keywords

microbial community
16
antibiotic resistance
16
production wastewater
16
antibiotic production
16
influence microbial
12
wastewater
9
wastewater characteristics
8
antibiotic
8
resistance genes
8
dissemination control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!