A simple and robust method for simultaneous dual-omics profiling with limited numbers of cells.

Cell Rep Methods

Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

Published: July 2021

Deciphering epigenetic regulation of gene expression requires measuring the epigenome and transcriptome jointly. Single-cell multi-omics technologies have been developed for concurrent profiling of chromatin accessibility and gene expression. However, multi-omics profiling of low-input bulk samples remains challenging. Therefore, we developed low-input ATAC&mRNA-seq, a simple and robust method for studying the role of chromatin structure in gene regulation in a single experiment with thousands of cells, to maximize insights from limited input material by obtaining ATAC-seq and mRNA-seq data simultaneously from the same cells with data quality comparable to that of conventional mono-omics assays. Integrative data analysis revealed similar strong association between promoter accessibility and gene expression when using the data of low-input ATAC&mRNA-seq as when using single-assay data, underscoring the accuracy and reliability of our dual-omics assay to generate both datum types simultaneously with just thousands of cells. We envision our method to be widely applied in many biological disciplines with limited materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372970PMC
http://dx.doi.org/10.1016/j.crmeth.2021.100041DOI Listing

Publication Analysis

Top Keywords

gene expression
12
simple robust
8
robust method
8
accessibility gene
8
low-input atac&mrna-seq
8
thousands cells
8
data
5
method simultaneous
4
simultaneous dual-omics
4
dual-omics profiling
4

Similar Publications

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!