The hippocampus is a key brain region for the storage and retrieval of episodic memories, but how it performs this function is unresolved. Leading theories posit that the hippocampus stores a sparse representation, or "index," of the pattern of neocortical activity that occurred during perception. During retrieval, reactivation of the index by a partial cue facilitates the reactivation of the associated neocortical pattern. Therefore, episodic retrieval requires joint reactivation of the hippocampal index and the associated neocortical networks. To test this theory, we examine the relation between performance on a recognition memory task requiring retrieval of image-specific visual details and feature-specific reactivation within the hippocampus and neocortex. We show that trial-by-trial recognition accuracy correlates with neural reactivation of low-level features (e.g., luminosity and edges) within the posterior hippocampus and early visual cortex for participants with high recognition lure accuracy. As predicted, the two regions interact, such that recognition accuracy correlates with hippocampal reactivation only when reactivation co-occurs within the early visual cortex (and vice versa). In addition to supporting leading theories of hippocampal function, our findings show large individual differences in the features underlying visual memory and suggest that the anterior and posterior hippocampus represents gist-like and detailed features, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370760 | PMC |
http://dx.doi.org/10.1093/texcom/tgab045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!