The is involved in egg-laying inhibition in response to harsh touch.

MicroPubl Biol

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.

Published: August 2021

The conserved family of Transmembrane channel-like (TMC) proteins has attracted significant interest since two members appear to be key components of the mammalian hair cell mechanotransducer involved in hearing. expresses two TMC proteins, TMC-1 and TMC-2. TMC-1 is widely expressed in in both muscles and the nervous system. This wide expression pattern suggests that TMC-1 might serve different functions in the various neurons. TMC-1 has previously been shown to function in neurons, playing a role in chemosensation in the ASH neurons and mechanosensation in OLQ neurons, further supporting this hypothesis. is expressed in the high-threshold mechanosensory neuron, ALA. We show that mutants show defects in the ALA-dependent inhibition of egg-laying in response to a harsh mechanical stimulus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369342PMC
http://dx.doi.org/10.17912/micropub.biology.000439DOI Listing

Publication Analysis

Top Keywords

response harsh
8
tmc proteins
8
involved egg-laying
4
egg-laying inhibition
4
inhibition response
4
harsh touch
4
touch conserved
4
conserved family
4
family transmembrane
4
transmembrane channel-like
4

Similar Publications

In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.

View Article and Find Full Text PDF

DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks.

View Article and Find Full Text PDF

The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions.

View Article and Find Full Text PDF

High-Performance Hydrogen Sensing at Room Temperature via Nb-Doped Titanium Oxide Thin Films Fabricated by Micro-Arc Oxidation.

Nanomaterials (Basel)

January 2025

Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.

Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.

View Article and Find Full Text PDF

CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions.

Arch Microbiol

January 2025

Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.

Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!