Respiratory diseases including apnea are often accompanied by abnormal respiratory depth, frequency, and rhythm. If different abnormal respiratory patterns can be detected and recorded, with their depth, frequency, and rhythm analyzed, the detection and diagnosis of respiratory diseases can be achieved. High-frequency millimeter-wave radar (76-81 GHz) has low environmental impact, high accuracy, and small volume, which is more suitable for respiratory signal detection and recognition compared with other contact equipment. In this paper, the experimental platform of frequency-modulated continuous wave (FMCW) radar was built at first, realizing the noncontact measurement of vital signs. Secondly, the energy intensity and threshold of respiration signal during each period were calculated by using the rectangular window, and the accurate judgment of apnea was realized via numerical comparison. Thirdly, the features of respiratory and heart rate signals, the number of peaks and valleys, the difference between peaks and valleys, the average and the standard deviation of normalized short-term energy, and the average and the standard deviation and the minimum of instantaneous frequency, were extracted and analyzed. Finally, support vector machine (SVM) and K-nearest neighbor (KNN) were used to classify the extracted features, and the accuracy was 98.25% and 88.75%, respectively. The classification and recognition of respiratory patterns have been successfully realized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370824PMC
http://dx.doi.org/10.1155/2021/9376662DOI Listing

Publication Analysis

Top Keywords

frequency-modulated continuous
8
continuous wave
8
respiratory
8
respiratory diseases
8
abnormal respiratory
8
depth frequency
8
frequency rhythm
8
respiratory patterns
8
peaks valleys
8
average standard
8

Similar Publications

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

Frequency-modulated continuous-wave (FMCW) radar is used to extract range and velocity information from the beat signal. However, the traditional joint range-velocity estimation algorithms often experience significant performances degradation under low signal-to-noise ratio (SNR) conditions. To address this issue, this paper proposes a novel approach utilizing the complementary ensemble empirical mode decomposition (CEEMD) combined with singular value decomposition (SVD) to reconstruct the beat signal prior to applying the FFT-Root-MUSIC algorithm for joint range and velocity estimation.

View Article and Find Full Text PDF

Integrated Modeling and Target Classification Based on mmWave SAR and CNN Approach.

Sensors (Basel)

December 2024

Wireless Sensing and Imaging Laboratory & 6G Research Laboratory, SRM University AP, Amaravati 522502, India.

This study presents a numerical modeling approach that utilizes millimeter-wave (mm-Wave) Frequency-Modulated Continuous-Wave (FMCW) radar to reconstruct and classify five weapon types: grenades, knives, guns, iron rods, and wrenches. A dataset of 1000 images of these weapons was collected from various online sources and subsequently used to generate 3605 samples in the MATLAB (R2022b) environment for creating reflectivity-added images. Background reflectivity was considered to range from 0 to 0.

View Article and Find Full Text PDF

Vital signs such as heart rate (HR) and respiration rate (RR) are essential physiological parameters that are routinely used to monitor human health and bodily functions. They can be continuously monitored through contact or contactless measurements performed in the home or a hospital. In this study, a contactless Doppler radar W-band sensing system was used for short-range, contactless vital sign estimation.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate a novel respiratory frequency-modulated continuous-wave radar-trigger (FT) technique for multiple -b-value diffusion-weighted imaging (DWI) of liver and compare it with conventional free breathing (FB) DWI technique.

Material And Methods: 39 patients with focal liver lesions underwent both frequency-modulated continuous-wave radar-trigger (FT) and conventional free-breathing (FB) multi-b-value diffusion-weighted imaging (DWI,b = 0,50,400,800 s/mm. Two abdominal radiologists independently assessed the quality of liver DWI images obtained using both techniques, measured and compared liver signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at different b-values, as well as apparent diffusion coefficient (ADC) values calculated from all b-values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!