Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A large number of metal organic frameworks (MOFs) synthesized to date have nodes with a Zn metal, and a detailed understanding of their gas separation efficiency upon metal exchange is needed to pave the way for designing the next generation of MOFs. In this work, we implemented a protocol to identify MOFs with Zn nodes out of 10,221 MOFs and classified them into two main groups. Depending on the pore properties and adsorption selectivities, two MOFs from IRMOFs and two MOFs from ZnO-MOFs were selected. The metal atom (Zn) of the selected four MOFs was exchanged with eight different metals (Cd, Co, Cr, Cu, Mn, Ni, Ti, and V), and 32 different metal-exchanged MOFs (M-MOFs) were obtained. By performing grand canonical Monte Carlo simulations, we investigated the influence of the metal type on the CO/H and CO/CH separation performances of these 32 M-MOFs. Physical properties of the MOFs such as the pore size and surface area, and chemical properties such as the partial charges of the atoms in the framework were investigated to understand the effect of metal exchange on the gas adsorption and separation performances of materials. Exchange of Zn with V and Cr led to a remarkable increase in the CO uptakes of selected MOFs and these increases were reflected on the adsorption selectivity, working capacity, and the adsorbent performance score of MOFs. The exchange of Zn with V increased the selectivity of one of the MOFs from 119 to 355 and the adsorbent performance score from 70 to 444 mol/kg, while for another MOF, exchange of Zn with Cr increased the selectivity from 161 to 921 and the adsorbent performance score from 162 to 1233 mol/kg under the condition of vacuum swing adsorption. The molecular level insights we provided to explain the improvement in the gas separation performances of M-MOFs will serve as a guide to design materials with exceptional CO separation performances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365775 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.1c03630 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!