BMP4 Moderates Glycolysis and Regulates Activation and Interferon-Gamma Production in CD4+ T Cells.

Front Immunol

Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.

Published: December 2021

BMP4 is a key growth factor well known in promoting bone regeneration and has been reported to be able to regulate T cell development in the thymus. Here, we showed that BMP4 downregulates the activation of naïve CD4+ T cells and the IFN-γ production of CD4+ T cells without increasing regulatory T cells. BMP4 could also moderate glycolysis of T cells and regulate Hif1α expression. Furthermore, BMP4 showed a suppressive function on the IFN-γ production of CD4+ T cells . These findings indicating a mechanism by which BMP-4 may regulate activation and IFN-γ production in CD4+ T cells metabolism moderation and suggests that BMP4 may be a potential therapeutic supplement in autoinflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368433PMC
http://dx.doi.org/10.3389/fimmu.2021.702211DOI Listing

Publication Analysis

Top Keywords

cd4+ cells
20
production cd4+
16
ifn-γ production
12
cells bmp4
8
cells
7
bmp4
6
cd4+
5
bmp4 moderates
4
moderates glycolysis
4
glycolysis regulates
4

Similar Publications

Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.

View Article and Find Full Text PDF

Anaemia and thrombocytopenia are blood-related irregularities linked to an increased likelihood of disease progression, leading to death in people living with human immunodeficiency virus 1 (PLHIV). Severe clinical conditions associated with human immunodeficiency 1 (HIV-1) infection may be related to blood irregularities among PLHIV. The study aimed to examine the factors correlated with blood irregularities among PLHIV receiving antiretroviral treatment in West Papua.

View Article and Find Full Text PDF

iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production.

View Article and Find Full Text PDF

Regulatory T Cells for Stroke Recovery: A Promising Immune Therapeutic Strategy.

CNS Neurosci Ther

January 2025

Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.

Background: Stroke remains a leading cause of mortality and disability among adults. Given the restricted therapeutic window for intravascular interventions and neuroprotection during the acute phase, there has been a growing focus on tissue repair and functional recovery in the subacute and chronic phases after stroke. The pro-inflammatory microglial polarization occurs in subacute and chronic phases after stroke and may represent therapeutic targets for stroke recovery.

View Article and Find Full Text PDF

Major Depressive Disorder (MDD) is a widespread psychiatric condition impacting social and occupational functioning, making it a leading cause of disability. The diagnosis of MDD remains clinical, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria, as biomarkers have not yet been validated for diagnostic purposes or as predictors of treatment response. Traditional treatment strategies often follow a one-size-fits-all approach obtaining suboptimal outcomes for many patients who fail to experience response or recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!