Segmentation of cardiac fibrosis and scars is essential for clinical diagnosis and can provide invaluable guidance for the treatment of cardiac diseases. Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful in guiding the clinical diagnosis and treatment reliably. For LGE CMR, many methods have demonstrated success in accurately segmenting scarring regions. Co-registration with other non-contrast-agent (non-CA) modalities [e.g., balanced steady-state free precession (bSSFP) cine magnetic resonance imaging (MRI)] can further enhance the efficacy of automated segmentation of cardiac anatomies. Many conventional methods have been proposed to provide automated or semi-automated segmentation of scars. With the development of deep learning in recent years, we can also see more advanced methods that are more efficient in providing more accurate segmentations. This paper conducts a state-of-the-art review of conventional and current state-of-the-art approaches utilizing different modalities for accurate cardiac fibrosis and scar segmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369509PMC
http://dx.doi.org/10.3389/fphys.2021.709230DOI Listing

Publication Analysis

Top Keywords

segmentation cardiac
12
fibrosis scar
8
scar segmentation
8
state-of-the-art review
8
cardiac fibrosis
8
clinical diagnosis
8
magnetic resonance
8
segmentation
5
cardiac
5
advances fibrosis
4

Similar Publications

Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.

Materials And Methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation.

View Article and Find Full Text PDF

Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.

Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.

View Article and Find Full Text PDF

Background: There is a lack of evidence regarding the association between plasma phenylacetylglutamine levels and lesion severity and clinical prognosis in patients with ST-segment elevation myocardial infarction (STEMI) with multivessel coronary disease (MVCD). This study aims to investigate the potential of phenylacetylglutamine as a biomarker for major adverse cardiovascular events (MACEs) of patients with STEMI and MVCD.

Methods And Results: Clinical data and blood samples were collected from 631 patients with STEMI and MVCD, who underwent primary percutaneous coronary intervention.

View Article and Find Full Text PDF

CardiacField: computational echocardiography for automated heart function estimation using two-dimensional echocardiography probes.

Eur Heart J Digit Health

January 2025

Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.

View Article and Find Full Text PDF

Objective: The aim of this paper is to discover differentially expressed genes related to ferroptosis (DEFRGs) in patients with ST-segment elevation myocardial infarction (STEMI) and to construct a reliable prognostic signature that incorporates key DEFRGs and easily accessible clinical factors.

Methods: We did a systematic review of Gene Expression Omnibus datasets and picked datasets SE49925, GSE60993, and GSE61144 for analysis. We applied GEO2R to find DEFRGs and overlapped them among the picked datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!