A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry. | LitMetric

The novel coronavirus (COVID-19) is highly detrimental, and its death distribution peculiarity has severely affected people's health and the operations of businesses. COVID-19 has wholly undermined the global economy, including inflicting significant damage to the ever-emerging biomass supply chain; its sustainability is disintegrating due to the coronavirus. The biomass supply chain must be sustainable and robust enough to adapt to the evolving and fluctuating risks of the market due to the coronavirus or any potential future pandemics. However, no such study has been performed so far. To address this issue, investigating how COVID-19 influences a biomass supply chain is vital. This paper presents a dynamic risk assessment methodological framework to model biomass supply chain risks due to COVID-19. Using a dynamic Bayesian network (DBN) formalism, the impacts of COVID-19 on the performance of biomass supply chain risks have been studied. The proposed model has been applied to the biomass supply chain of a U.S.-based Mahoney Environmental® company in Washington, USA. The case study results show that it would take one year to recover from the maximum damage to the biomass supply chain due to COVID-19, while full recovery would require five years. Results indicate that biomass feedstock gate availability (FGA) is 2%, due to pandemic and lockdown conditions. Due to the availability of vaccination and gradual business reopenings, this availability increases to 92% in the second year. Results also indicate that the price of fossil-based fuel will gradually increase after one year of the pandemic; however, the market prices of fossil-based fuel will not revert to pre-coronavirus conditions even after nine years. K-fold cross-validation is used to validate the DBN. Results of validation indicate a model accuracy of 95%. It is concluded that the pandemic has caused risks to the sustainability of biomass feedstock, and the current study can help develop risk mitigation strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363463PMC
http://dx.doi.org/10.1016/j.rser.2021.111574DOI Listing

Publication Analysis

Top Keywords

biomass supply
32
supply chain
32
biomass
10
dynamic risk
8
risk assessment
8
coronavirus covid-19
8
sustainability biomass
8
supply
8
chain
8
case study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!