Intelligent computing on time-series data analysis and prediction of COVID-19 pandemics.

Pattern Recognit Lett

Krupajal Computer Academy, Bhubaneswar, Odisha, India.

Published: November 2021

Covid-19 disease caused by novel coronavirus (SARS-CoV-2) is a highly contagious epidemic that originated in Wuhan, Hubei Province of China in late December 2019. World Health Organization (WHO) declared Covid-19 as a pandemic on 12th March 2020. Researchers and policy makers are designing strategies to control the pandemic in order to minimize its impact on human health and economy round the clock. The SARS-CoV-2 virus transmits mostly through respiratory droplets and through contaminated surfacesin human body.Securing an appropriate level of safety during the pandemic situation is a highly problematic issue which resulted from the transportation sector which has been hit hard by COVID-19. This paper focuses on developing an intelligent computing model for forecasting the outbreak of COVID-19. The Facebook Prophet model predicts 90 days future values including the peak date of the confirmed cases of COVID-19 for six worst hit countries of the world including India and six high incidence states of India. The model also identifies five significant changepoints in the growth curve of confirmed cases of India which indicate the impact of the interventions imposed by Government of India on the growth rate of the infection. The goodness-of-fit of the model measures 85% MAPE for all six countries and all six states of India. The above computational analysis may be able to throw some light on planning and management of healthcare system and infrastructure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364174PMC
http://dx.doi.org/10.1016/j.patrec.2021.07.027DOI Listing

Publication Analysis

Top Keywords

intelligent computing
8
confirmed cases
8
states india
8
covid-19
6
india
5
computing time-series
4
time-series data
4
data analysis
4
analysis prediction
4
prediction covid-19
4

Similar Publications

The research study objective seeks to improve the efficiency of wind turbines using state-of-the-art techniques in the domain of ML, making wind energy the key player in fashioning a favorable future. Wind Turbine Health Monitoring (WTHM) is typically achieved through either vibration analysis or by using Supervisory Control and Data Acquisition (SCADA) data of wind turbines, wherein conventional fault pattern identification is a time-consuming, guesswork process. This work proposed an intelligent automated approach to early fault detection through the implementation of the HARO (Huber Adam Regression Optimizer) model, which combines Transformer networks with Lasso Regression and the Adam optimizer.

View Article and Find Full Text PDF

Author Correction: Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models.

Nat Commun

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.

View Article and Find Full Text PDF

AIScholar: An OpenFaaS-enhanced cloud platform for intelligent medical data analytics.

Comput Biol Med

January 2025

Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610065, China.

This paper presents AIScholar, an intelligent research cloud platform developed based on artificial intelligence analysis methods and the OpenFaaS serverless framework, designed for intelligent analysis of clinical medical data with high scalability. AIScholar simplifies the complex analysis process by encapsulating a wide range of medical data analytics methods into a series of customizable cloud tools that emphasize ease of use and expandability, within OpenFaaS's serverless computing framework. As a multifaceted auxiliary tool in medical scientific exploration, AIScholar accelerates the deployment of computational resources, enabling clinicians and scientific personnel to derive new insights from clinical medical data with unprecedented efficiency.

View Article and Find Full Text PDF

Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.

Neural Comput

January 2025

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.

Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.

View Article and Find Full Text PDF

Boosting skin cancer diagnosis accuracy with ensemble approach.

Sci Rep

January 2025

School of Information and Electronic Engineering and Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Zhejiang University of Science and Technology, No. 318, Hangzhou, Zhejiang, China.

Skin cancer is common and deadly, hence a correct diagnosis at an early age is essential. Effective therapy depends on precise classification of the several skin cancer forms, each with special traits. Because dermoscopy and other sophisticated imaging methods produce detailed lesion images, early detection has been enhanced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!