Minimal Physiologically Based Pharmacokinetic-Pharmacodynamic (mPBPK-PD) Model of -Acetylgalactosamine-Conjugated Small Interfering RNA Disposition and Gene Silencing in Preclinical Species and Humans.

J Pharmacol Exp Ther

Clinical Pharmacology & Pharmacometrics (V.S.A., D.S.) and Janssen BioTherapeutics (V.S.A., S.Z., T.C., D.L.H.), Janssen Research and Development, Spring House, Pennsylvania.

Published: November 2021

Conjugation of small interfering RNA (siRNA) to tris -acetylgalactosamine [(GalNAc)] can enable highly selective, potent, and durable knockdown of targeted proteins in the liver. However, potential knowledge gaps between in vitro experiments, preclinical species, and clinical scenarios remain. A minimal physiologically based pharmacokinetic-pharmacodynamic model for GalNAc-conjugated siRNA (GalNAc-siRNA) was developed using published data for fitusiran (ALN-AT3), an investigational compound targeting liver antithrombin (AT), to delineate putative determinants governing the whole-body-to-cellular pharmacokinetic (PK) and pharmacodynamic (PD) properties of GalNAc-siRNA and facilitate preclinical-to-clinical translation. The model mathematically linked relevant mechanisms: 1) hepatic biodistribution, 2) tris-GalNAc binding to asialoglycoprotein receptors (ASGPRs) on hepatocytes, 3) ASGPR endocytosis and recycling, 4) endosomal transport and escape of siRNA, 5) cytoplasmic RNA-induced silencing complex (RISC) loading, 6) degradation of target mRNA by bound RISC, and 7) knockdown of protein. Physiologic values for 36 out of 48 model parameters were obtained from the literature. Kinetic parameters governing (GalNAc)-ASGPR binding and internalization were derived from published studies of uptake in hepatocytes. The proposed model well characterized reported pharmacokinetics, RISC dynamics, and knockdown of AT mRNA and protein by ALN-AT3 in mice. The model bridged multiple PK-PD data sets in preclinical species (mice, rat, monkey) and successfully captured reported plasma pharmacokinetics and AT knockdown in a phase I ascending-dose study. Estimates of in vivo potency were similar (∼2-fold) across species. Subcutaneous absorption and serum AT degradation rate constants scaled across species by body weight with allometric exponents of -0.29 and -0.22. The proposed mechanistic modeling framework characterizes the unique PK-PD properties of GalNAc-siRNA. SIGNIFICANCE STATEMENT: Tris -acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) therapeutics enable liver-targeted gene therapy and precision medicine. Using a translational and systems-based minimal physiologically based pharmacokinetic-pharmacodynamic (mPBPK-PD) modeling approach, putative determinants influencing GalNAc-conjugated siRNA (GalNAc-siRNA) functionality in three preclinical species and humans were investigated. The developed model successfully integrated and characterized relevant published in vitro-derived biomeasures, mechanistic PK-PD profiles in animals, and observed clinical PK-PD responses for an investigational GalNAc-siRNA (fitusiran). This modeling effort delineates the disposition and liver-targeted pharmacodynamics of GalNAc-siRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.121.000805DOI Listing

Publication Analysis

Top Keywords

preclinical species
16
minimal physiologically
12
physiologically based
12
based pharmacokinetic-pharmacodynamic
12
small interfering
12
interfering rna
12
pharmacokinetic-pharmacodynamic mpbpk-pd
8
species humans
8
rna sirna
8
tris -acetylgalactosamine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!