Background And Purpose: Conventional MR imaging scoring is a valuable tool for risk stratification and prognostication of outcomes, but manual scoring is time-consuming, operator-dependent, and requires high-level expertise. This study aimed to automate the regional measurements of an established brain MR imaging scoring system for preterm neonates scanned between 29 and 47 weeks' postmenstrual age.

Materials And Methods: This study used T2WI from the longitudinal Prediction of PREterm Motor Outcomes cohort study and the developing Human Connectome Project. Measures of biparietal width, interhemispheric distance, callosal thickness, transcerebellar diameter, lateral ventricular diameter, and deep gray matter area were extracted manually (Prediction of PREterm Motor Outcomes study only) and automatically. Scans with poor quality, failure of automated analysis, or severe pathology were excluded. Agreement, reliability, and associations between manual and automated measures were assessed and compared against statistics for manual measures. Associations between measures with postmenstrual age, gestational age at birth, and birth weight were examined (Pearson correlation) in both cohorts.

Results: A total of 652 MRIs (86%) were suitable for analysis. Automated measures showed good-to-excellent agreement and good reliability with manual measures, except for interhemispheric distance at early MR imaging (scanned between 29 and 35 weeks, postmenstrual age; in line with poor manual reliability) and callosal thickness measures. All measures were positively associated with postmenstrual age ( = 0.11-0.94; = 0.01-0.89). Negative and positive associations were found with gestational age at birth ( = -0.26-0.71; = 0.05-0.52) and birth weight ( = -0.25-0.75; = 0.06-0.56). Automated measures were successfully extracted for 80%-99% of suitable scans.

Conclusions: Measures of brain injury and impaired brain growth can be automatically extracted from neonatal MR imaging, which could assist with clinical reporting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562751PMC
http://dx.doi.org/10.3174/ajnr.A7230DOI Listing

Publication Analysis

Top Keywords

postmenstrual age
16
automated measures
12
measures
11
scoring system
8
scanned weeks'
8
weeks' postmenstrual
8
imaging scoring
8
prediction preterm
8
preterm motor
8
motor outcomes
8

Similar Publications

Background: To explore the utility of general movements assessment as a predictive tool of the neurological outcome in term-born infants with hypoxic-ischemic encephalopathy (HIE) at ages six and 12 months.

Methods: This prospective observational study was conducted for 18 months (August 2018 to December 2019). Term-born newborns with HIE were included.

View Article and Find Full Text PDF

A Review of Vancomycin, Gentamicin, and Amikacin Population Pharmacokinetic Models in Neonates and Infants.

Clin Pharmacokinet

January 2025

Division of Medicines, Department of Pharmacy, Pharmacy Service, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.

Population pharmacokinetic (popPK) models are an essential tool when implementing therapeutic drug monitoring (TDM) and to overcome dosing challenges in neonates in clinical practice. Since vancomycin, gentamicin, and amikacin are among the most prescribed antibiotics for the neonatal population, we aimed to characterize the popPK models of these antibiotics and the covariates that may influence the pharmacokinetic parameters in neonates and infants with no previous pathologies. We searched the PubMed, Embase, Web of Science, and Scopus databases and the bibliographies of relevant articles from inception to the beginning of February 2024.

View Article and Find Full Text PDF

Introduction: Congenital diaphragmatic hernia (CDH) in the preterm population is increasingly common in the current era of fetal endoluminal tracheal occlusion (FETO) therapy. There remains a lack of clinical guidance for clinicians and surgeons regarding optimal management strategies for such infants. We aimed to describe our experience in managing preterm CDH in a single quaternary neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Introduction: Bronchopulmonary dysplasia (BPD) is one of the most common and significant complications of preterm birth. It ultimately leads to a decrease in the quality of life for preterm infants and impacts their long-term health. Early prediction and timely intervention are crucial to halting the development of BPD.

View Article and Find Full Text PDF

Developmental Trajectories and Differences in Functional Brain Network Properties of Preterm and At-Term Neonates.

Hum Brain Mapp

January 2025

Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.

Premature infants, born before 37 weeks of gestation can have alterations in neurodevelopment and cognition, even when no anatomical lesions are evident. Resting-state functional neuroimaging of naturally sleeping babies has shown altered connectivity patterns, but there is limited evidence on the developmental trajectories of functional organization in preterm neonates. By using a large dataset from the developing Human Connectome Project, we explored the differences in graph theory properties between at-term (n = 332) and preterm (n = 115) neonates at term-equivalent age, considering the age subgroups proposed by the World Health Organization for premature birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!