Due to the abundance and easy availability of solar energy resources, solar-driven water evaporation provides a sustainable way to obtain clean water from wastewater and seawater. However, achieving a high evaporation rate with excellent light absorption remains a critical challenge in the structural regulation of evaporators. Herein, inspired by the natural transpiration process in plants (blue spruce), we designed a three-dimensional (3D) cone-shaped solar steam generator based on vertical polypyrrole nanowires-coated fabric (VPPyNWs-fabric). The microstructure design of polypyrrole (PPy) increases the solar energy absorption of the incident light through multiple reflections between the VPPyNWs, while the macrostructure design of the 3D evaporator possesses an enlarged surface area for energy harvesting, wide path for water supply, and open structure for vapor diffusion. As a proof of concept, the as-obtained 3D VPPyNWs-fabric-based solar steam generator demonstrates a fast water evaporation rate of 2.32 kg m h with high solar absorption of 97% and solar-to-vapor conversion efficiency of 98.56% at 1 kW m energy density. In addition, the solar steam generator can be steadily applied in various water conditions, e.g., seawater, dye wastewater, and acidic and alkaline wastewater. This high-performance evaporator via 3D macro- and microstructure design offers a new avenue for better utilization of solar energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c11802 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Mechanical Engineering, Delhi Technological University, Delhi, 110042, India.
The present study summarises recent developments in solar-assisted extraction systems for distillation of essential oil from aromatic and medicinal plants. Various solar integrated essential oil extraction systems are compared based on performance parameters such as essential oil yield and system efficiency along with their potential effects on the domains of renewable energy. Solar steam distillation is an environmentally beneficial and energy-efficient technology of desalination that is especially ideal for areas with plentiful sun resources.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.
View Article and Find Full Text PDFMater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
Bionic evaporators inspired by natural plants like bamboo and mushrooms have emerged as efficient generators through water capillary evaporation. However, primitive natural evaporators cannot currently meet growing demand, and their performance limitations remain largely unexplored, presenting a substantial challenge. Through extensive experimentation and detailed simulation analysis, this study presents a precisely engineered H-type bamboo steam generator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!