Sphingomyelinase (SMase) is closely related to diseases like Niemann-Pick disease and atherosclerosis, and the development of a simple method for the assay of SMase activity is very useful to screen new potential inhibitors or stimulators of SMase or biomarkers of disease. Fluorophore-encapsulated nanoliposomes (FENs) are emerging as a new fluorescent probe for sensing the enzymatic activity. In this work, two fluorochromes (cy7 and IR780) were encapsulated into the liposome of sphingomyelin, and therefore, a sphingomyelin-based ratiometric FEN probe for the SMase activity assay was constructed. The probe shows high selectivity and sensitivity to acid SMase with a detection limit of 4.8 × 10 U/mL. Sphingomyelin is the natural substrate of SMase; therefore, the probe has native ability for all kinds of SMase activity assays. Moreover, the probe has been successfully applied to the analysis of acid SMase activity in cells and urine samples. As far as we know, this is the first example of a nanoliposome fluorescence method for assaying acid SMase, and the method is biocompatible and much simpler than the existing ones, which might provide a new strategy for developing new methods for other important esterases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c02197 | DOI Listing |
Pathogens
January 2025
Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico.
The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye. Electronic address:
Bacillus cereus sphingomyelinase C (B. cereus SMase), which plays a crucial role in bacterial virulence, has emerged as a new therapeutic target for treating opportunistic infections caused by this pathogen. It also shares catalytic domain similarity with human neutral sphingomyelinase 2 (nSMase2), which is implicated in Alzheimer's disease.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary.
Transient Receptor Potential (TRP) ion channels like Vanilloid 1 (TRPV1) and Melastatin 3 (TRPM3) are nonselective cation channels expressed in primary sensory neurons and peripheral nerve endings, which are located in cholesterol- and sphingolipid-rich membrane lipid raft regions and have important roles in pain processing. Besides TRP ion channels a wide variety of voltage-gated ion channels were also described in the membrane raft regions of neuronal cells. Here we investigated the effects of lipid raft disruption by methyl-beta-cyclodextrin (MCD) and sphingomyelinase (SMase) on TRPV1, TRPM3 and voltage-gated L-type Ca channel activation in cultured trigeminal neurons and sensory nerve terminals of the trachea.
View Article and Find Full Text PDFAtherosclerosis
October 2024
Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain. Electronic address:
Background And Aims: Low-density lipoprotein (LDL) aggregation is nowadays considered a therapeutic target in atherosclerosis. DP3, the retro-enantio version of the sequence Gly-Cys of LRP1, efficiently inhibits LDL aggregation and foam cell in vitro formation. Here, we investigate whether DP3 modulates atherosclerosis in a humanized ApoB100, LDL receptor (LDLR) knockout mice (LdlrhApoB100 Tg) and determine the potential LDL-related underlying mechanisms.
View Article and Find Full Text PDFWorld J Gastroenterol
March 2024
International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China.
Background: Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!