Dirac particles on periodic quantum graphs.

Phys Rev E

Yeoju Technical Institute in Tashkent, 156 Usman Nasyr Street, 100121 Tashkent, Uzbekistan.

Published: July 2021

We consider the Dirac equation on periodic networks (quantum graphs). The self-adjoint quasiperiodic boundary conditions are derived. The secular equation allowing us to find the energy spectrum of the Dirac particles on periodic quantum graphs is obtained. Band spectra of the periodic quantum graphs of different topologies are calculated. Universality of the probability to be in the spectrum for certain graph topologies is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.014219DOI Listing

Publication Analysis

Top Keywords

quantum graphs
16
periodic quantum
12
dirac particles
8
particles periodic
8
periodic
4
quantum
4
graphs
4
graphs consider
4
consider dirac
4
dirac equation
4

Similar Publications

MXenes quantum dots (QDs), including NbC, NbCO, and NbCF, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of NbC with O and F atoms enhances stability, with binding energies (BEs) of 7.

View Article and Find Full Text PDF

Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.

View Article and Find Full Text PDF

Base-catalyzed thiol-epoxy reactions: Energetic and kinetic evaluations.

J Mol Graph Model

December 2024

Chemical Engineering Department, Ondokuz Mayıs University, 55139, Samsun, Turkey. Electronic address:

The mechanism of the base-catalyzed thiol-epoxide stage of the thiol-ene/thiol-epoxide curing process was investigated using quantum chemical tools. This study searched for conventional tertiary amines with low to medium basicity as initiators to control reaction rates and tailor industrial applications. Challenges arise from the stronger basicity of initiators, leading to an uncontrollable and short curing application period.

View Article and Find Full Text PDF

We consider wavefunctions built from antisymmetrized products of two-electron wavefunctions (geminals), which is arguably the simplest extension of the antisymmetrized product of one-electron wavefunctions (orbitals) (i.e., a Slater determinant).

View Article and Find Full Text PDF

The growing popularity of machine learning (ML) and deep learning (DL) in scientific fields is hindered by the scarcity of high-quality datasets. While quantum mechanical (QM) predictions using DL techniques such as graph neural networks (GNNs) and generative models are gaining traction, insufficient training data remains a bottleneck. The QM40 dataset addresses this challenge by representing 88% of the FDA-approved drug chemical space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!