Traditionally the study of dynamics of glass-forming materials has been focused on the structural α relaxation. However, in recent years experimental evidence has revealed that a secondary β relaxation belonging to a special class, called the Johari-Goldstein (JG) β relaxation, has properties strongly linked to the primary α relaxation. By invoking the principle of causality, the relation implies the JG β relaxation is fundamental and indispensable for generating the α relaxation, and the properties of the latter are inherited from the former. The JG β relaxation is observed together with the α relaxation mostly by dielectric spectroscopy. The macroscopic nature of the data allows the use of arbitrary or unproven procedures to analyze the data. Thus the results characterizing the JG β relaxation and the relation of its relaxation time τ_{β} to the α-relaxation time τ_{α} obtained can be equivocal and controversial. Coming to the rescue is the nuclear resonance time-domain-interferometry (TDI) technique covering a wide time range (10^{-9}-10^{-5}s) and a scattering vector q range (9.6-40nm^{-1}). TDI experiments have been carried out on four glass formers, ortho-terphenyl [M. Saito et al., Phys. Rev. Lett. 109, 115705 (2012)10.1103/PhysRevLett.109.115705], polybutadiene [T. Kanaya et al., J. Chem. Phys. 140, 144906 (2014)10.1063/1.4869541], 5-methyl-2-hexanol [F. Caporaletti et al., Sci. Rep. 9, 14319 (2019)10.1038/s41598-019-50824-7], and 1-propanol [F. Caporaletti et al., Nat. Commun. 12, 1867 (2021)10.1038/s41467-021-22154-8]. In this paper the TDI data are reexamined in conjunction with dielectric and neutron scattering data. The results show the JG β relaxation observed by dielectric spectroscopy is heterogeneous and comprises processes with different length scales. A process with a longer length scale has a longer relaxation time. TDI data also prove the primitive relaxation time τ_{0} of the coupling model falls within the distribution of the TDI q-dependent JG β-relaxation times. This important finding explains why the experimental dielectric JG β-relaxation times τ_{β}(T,P) is approximately equal to τ_{0}(T,P) as found in many glass formers at various temperature T and pressure P. The result, τ_{β}(T,P)≈τ_{0}(T,P), in turn explains why the ratio τ_{α}(T,P)/τ_{β}(T,P) is invariant to changes of T and pressure P at constant τ_{α}(T,P), the α-relaxation time.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.015103DOI Listing

Publication Analysis

Top Keywords

relaxation
14
relaxation time
12
johari-goldstein relaxation
8
relaxation properties
8
relaxation observed
8
dielectric spectroscopy
8
α-relaxation time
8
glass formers
8
caporaletti et al
8
tdi data
8

Similar Publications

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias.

View Article and Find Full Text PDF

Background: While limited data on the impact of implementing guidelines in airway management on outcomes exist, there is a consensus that the implementation and the adherence to guidelines enhance patient safety. Recently, the Swiss Society for Anesthesiology and Perioperative Medicine (SSAPM) endorsed the guidelines of The Fondation Latine des Voies Aériennes (FLAVA) as the official guidelines for airway management in Switzerland. This study aimed to determine current practice of airway management in Switzerland.

View Article and Find Full Text PDF

The therapeutic agent-based self-assembled hydrogel is gaining interest for biomedical applications, because it overcomes the poor biodegradability and low therapeutic agent loading of conventional polymer gelator-based hydrogel. Here, we present rhein lysinate (RHL), a therapeutic agent that self-assembles to form a stable hydrogel through the π-π stacking and hydrogen bonding interactions, while also exerting anti-neuroinflammatory effect. As a small molecular hydrogelator, RHL has significantly improved water solubility and enhanced self-assembly and gelation capabilities compared to the natural anthraquinone rhein.

View Article and Find Full Text PDF

Every heartbeat depends on cyclical contraction-relaxation produced by the interactions between myosin-containing thick and actin-based thin filaments (TFs) arranged into a crystalline-like lattice in the cardiac sarcomere. Therefore, the maintenance of thin filament length is crucial for myocardium function. The thin filament is comprised of an actin backbone, the regulatory troponin complex and tropomyosin that controls interactions between thick and thin filaments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!