Reduced dynamics of a one-dimensional Janus particle.

Phys Rev E

Institute of Physics, Slovak Academy of Sciences, Dúbravska cesta 9, 84511 Bratislava, Slovakia.

Published: July 2021

A Janus particle diffusing on a line is considered. Aside from its own driving force f acting forward or backward according to its stochastic orientation, it moves in a position-dependent potential U(x). We propose here the mapping scheme generating the effective generalized Fick-Jacobs equation, describing motion of the particle in the spatial coordinate x only; the orientation is understood as the transverse coordinate. The self-propulsion, driving the system out of equilibrium, is reflected as an additional effective potential -γ(x) in the reduced picture. It enables us to understand peculiarities of this system in a handy way. The additionally corrected potential redistributes the confined particles in quasiequilibrium causing their piling at the walls. In periodic asymmetric channels, it acquires a growing contribution, responsible for driving the ratchet effect.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.014608DOI Listing

Publication Analysis

Top Keywords

janus particle
8
reduced dynamics
4
dynamics one-dimensional
4
one-dimensional janus
4
particle janus
4
particle diffusing
4
diffusing considered
4
considered driving
4
driving force
4
force acting
4

Similar Publications

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Selective In Situ Analysis of Hepatogenic Exosomal microRNAs via Virus-Mimicking Multifunctional Magnetic Vesicles.

Adv Healthc Mater

January 2025

The Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing University Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.

Drug-induced liver injury (DILI) is a common clinical problem with urgent respect to demanding early diagnosis. Exosomal miRNAs are reliable and noninvasive biomarkers for the early diagnosis of DILI. However, accurate and feasible detection of exosomal miRNAs is often hampered by the low abundance of miRNAs, inefficient exosome separation techniques, and the requirement for RNA extraction from large sample volumes.

View Article and Find Full Text PDF

Urchin-like magnetic nanoparticles loaded with type X collagen siRNA and Stattic to treat triple negative breast cancer under rotating magnetic field like an "enchanted micro-scalpel".

Int J Biol Macromol

January 2025

Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:

Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.

View Article and Find Full Text PDF

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!