High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is proposed to generate the super- resolution MR image from low-resolution magnetic resonance images, which can reduce the scanning time effectively but with high resolution MR images. In the framework of the FA-GAN, the local fusion feature block, consisting of different three-pass networks by using different convolution kernels, is proposed to extract image features at different scales. And the global feature fusion module, including the channel attention module, the self-attention module, and the fusion operation, is designed to enhance the important features of the MR image. Moreover, the spectral normalization process is introduced to make the discriminator network stable. 40 sets of 3D magnetic resonance images (each set of images contains 256 slices) are used to train the network, and 10 sets of images are used to test the proposed method. The experimental results show that the PSNR and SSIM values of the super-resolution magnetic resonance image generated by the proposed FA-GAN method are higher than the state-of-the-art reconstruction methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453331 | PMC |
http://dx.doi.org/10.1016/j.compmedimag.2021.101969 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China (Q.X.). Electronic address:
Rationale And Objectives: Alzheimer's disease (AD) is the most common pathogenesis of dementia, and mild cognitive impairment (MCI) is considered as the intermediate stage from normal elderly to AD. Early detection of MCI is an essential step for the timely intervention of AD to slow the progression of this disease. Different form previous studies in the whole-brain spontaneous activities, this research aimed to explore the low-frequency amplitude spectrum activities of patients with MCI within the default mode network (DMN), which has been involved in the process of maintaining normal cognitive function.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
MIND Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.
Background: Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, comprised of the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information.
View Article and Find Full Text PDFFood Chem
December 2024
INRAE, OPAALE, 35044 Rennes, France. Electronic address:
Understanding lipid digestion is crucial for promoting human health. Traditional methods for studying lipolysis face challenges in sample representativeness and pre-treatment, and cannot measure real-time lipolysis in vivo. Thus, non-invasive techniques like magnetic resonance imaging (MRI) need to be developed.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil. Electronic address:
Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:
To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!