Extra virgin olive oil (EVOO) was gelled with 10% monoglycerides, (MG), rice wax (RW), γ-oryzanol, and β-sitosterol (PS), or ethylcellulose (EC). The oleogel structure and the stability of bioactive compounds were investigated during storage up to 120 days at 20, 30, and 40 °C. All samples were self-standing but presented different structures. PS produced the firmest gel, whereas EC caused the lowest firmness and rheological values. Structural properties did not change during storage, except for EC oleogel. Structuring triggered a depletion in phenolic content and α-tocopherol, which was more pronounced when a higher temperature was required for oleogel preparation (MG ~ RW < PS < EC). However, during storage phenolics and α-tocopherol decreased following zero-order kinetics with a higher susceptibility in unstructured oil, suggesting in all cases a protective effect of the gel network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130779DOI Listing

Publication Analysis

Top Keywords

extra virgin
8
virgin olive
8
olive oil
8
stability bioactive
8
bioactive compounds
8
oleogelation extra
4
oil oleogelators
4
oleogelators physical
4
physical properties
4
properties stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!