Efficient inactivation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in human apheresis platelet concentrates with amotosalen and ultraviolet A light.

Transfus Clin Biol

Special Infectious Agents Unit, BSL3, King Fahd Medical Research Center and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Electronic address:

Published: February 2022

Objectives: The detection of SARS-CoV-2 RNA in blood and platelet concentrates from asymptomatic donors, and the detection of viral particles on the surface and inside platelets during in vitro experiments, raised concerns over the potential risk for transfusion-transmitted-infection (TTI). The objective of this study was to assess the efficacy of the amotosalen/UVA pathogen reduction technology for SARS-CoV-2 in human platelet concentrates to mitigate such potential risk.

Material And Methods: Five apheresis platelet units in 100% plasma were spiked with a clinical SARS-CoV-2 isolate followed by treatment with amotosalen/UVA (INTERCEPT Blood System), pre- and posttreatment samples were collected as well as untreated positive and negative controls. The infectious viral titer was assessed by plaque assay and the genomic titer by quantitative RT-PCR. To exclude the presence of infectious particles post-pathogen reduction treatment below the limit of detection, three consecutive rounds of passaging on permissive cell lines were conducted.

Results: SARS-CoV-2 in platelet concentrates was inactivated with amotosalen/UVA below the limit of detection with a mean log reduction of>3.31±0.23. During three consecutive rounds of passaging, no viral replication was detected. Pathogen reduction treatment also inhibited nucleic acid detection with a log reduction of>4.46±0.51 PFU equivalents.

Conclusion: SARS-CoV-2 was efficiently inactivated in platelet concentrates by amotosalen/UVA treatment. These results are in line with previous inactivation data for SARS-CoV-2 in plasma as well as MERS-CoV and SARS-CoV-1 in platelets and plasma, demonstrating efficient inactivation of human coronaviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366050PMC
http://dx.doi.org/10.1016/j.tracli.2021.08.005DOI Listing

Publication Analysis

Top Keywords

platelet concentrates
20
efficient inactivation
8
sars-cov-2 human
8
apheresis platelet
8
pathogen reduction
8
reduction treatment
8
limit detection
8
three consecutive
8
consecutive rounds
8
rounds passaging
8

Similar Publications

Background/objectives: Adenoviral vector-based vaccines against COVID-19 rarely cause vaccine-induced immune thrombocytopenia and thrombosis (VITT), a severe adverse reaction caused by IgG antibodies against platelet factor 4 (PF4). To study VITT, patient samples are crucial but have become a scarce resource. Recombinant antibodies (rAbs) derived from VITT patient characteristic amino acid sequences of anti-PF4 IgG are an alternative to study VITT pathophysiology.

View Article and Find Full Text PDF

Aim: This review aims to explore the clinical applications, biological mechanisms, and potential benefits of concentrated growth factors (CGFs), autologous materials, and xenografts in bone regeneration, particularly in dental treatments such as alveolar ridge preservation, mandibular osteonecrosis, and peri-implantitis.

Materials And Methods: A systematic literature search was conducted using databases like PubMed, Scopus, and Web of Science, with keywords such as "bone regeneration" and "CGF" from 2014 to 2024. Only English-language clinical studies involving human subjects were included.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Contribute to the Disease Severity of Dengue Virus Infection.

J Arthropod Borne Dis

June 2024

Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, Pelita Harapan University, Tangerang, Indonesia.

Background: The spectrum of dengue infection ranges from asymptomatic or mild to severe disease. The pathogenic mechanisms are not fully understood. A viral infection can induce the neutrophil extracellular traps (NETs), and the excessive NETs lead to increased vascular permeability, coagulopathy, and platelet dysfunction, a hallmark of severe dengue.

View Article and Find Full Text PDF

Platelet Function Assay Using Dielectric Blood Coagulometry.

Anal Chem

January 2025

Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku 113-8510, Tokyo, Japan.

The hemostatic function of platelets is complementary to blood coagulation. However, traditional platelet function tests have primarily focused on measuring platelet aggregation, reducing their clinical effectiveness for antiplatelet drug monitoring. To address this limitation, we propose a new test principle that evaluates platelet function and the effects of antiplatelet drugs through blood coagulation reactions.

View Article and Find Full Text PDF

The effect of physical cues on platelet storage lesion.

Hematology

December 2025

Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.

Background: Platelet concentrates play an important role in clinical treatment such as platelet function disorders and thrombocytopenia. In the process of preparation and storage of platelets, centrifugation, leukofiltration, and agitation will cause morphological changes and impaired function of platelets, which is associated with the increase of platelet transfusion refractoriness, and named as platelet storage lesion (PSL).

Method: This paper proposes three major operations (centrifugation, agitation, and leukofiltration) that platelets experience during the preparation and storage process, to explore the effect of physical cues on PSL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!