Complex anatomical form is regulated in part by endogenous physiological communication between cells; however, the dynamics by which gap junctional (GJ) states across tissues regulate morphology are still poorly understood. We employed a biophysical modeling approach combining different signaling molecules (morphogens) to qualitatively describe the anteroposterior and lateral morphology changes in model multicellular systems due to intercellular GJ blockade. The model is based on two assumptions for blocking-induced patterning: (i) the local concentrations of two small antagonistic morphogens diffusing through the GJs along the axial direction, together with that of an independent, uncoupled morphogen concentration along an orthogonal direction, constitute the instructive patterns that modulate the morphological outcomes, and (ii) the addition of an external agent partially blocks the intercellular GJs between neighboring cells and modifies thus the establishment of these patterns. As an illustrative example, we study how the different connectivity and morphogen patterns obtained in presence of a GJ blocker can give rise to novel head morphologies in regenerating planaria. We note that the ability of GJs to regulate the permeability of morphogens post-translationally suggests a mechanism by which different anatomies can be produced from the same genome without the modification of gene-regulatory networks. Conceptually, our model biosystem constitutes a reaction-diffusion information processing mechanism that allows reprogramming of biological morphologies through the external manipulation of the intercellular GJs and the resulting changes in instructive biochemical signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2021.104511 | DOI Listing |
Anat Histol Embryol
January 2025
Laboratório de Design Anatômico/LabDA-Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
Osteometric studies of the mandible are useful for identifying polymorphisms that are affected by general factors of anatomical variation, such as breed and gender, but age-related changes have not yet been reported in sheep. Our results showed that the morphometric parameters of the mandible were significantly affected by the age of the lambs. However, at 155 days of age, the mandible already presents all the morphological characteristics observed in adult animals.
View Article and Find Full Text PDFiScience
January 2025
Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
Cancers and neurodegenerative disorders are associated with both disrupted proteostasis and altered nuclear morphology. Determining if changes in nuclear morphology contribute to pathology requires an understanding of the underlying mechanisms, which are difficult to elucidate in cells where pleiotropic effects of altering proteostasis might indirectly influence nuclear morphology. To investigate direct effects, we studied nuclei assembled in egg extract where potentially confounding effects of transcription, translation, cell cycle progression, and actin dynamics are absent.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Radiology Department, National Cancer Institute, Cairo University, Egypt.
Purpose: To investigate the impact of artificial intelligence (AI) reading digital mammograms in increasing the chance of detecting missed breast cancer, by studying the AI- flagged early morphology indictors, overlooked by the radiologist, and correlating them with the missed cancer pathology types.
Methods And Materials: Mammograms done in 2020-2023, presenting breast carcinomas (n = 1998), were analyzed in concordance with the prior one year's result (2019-2022) assumed negative or benign. Present mammograms reviewed for the descriptors: asymmetry, distortion, mass, and microcalcifications.
J Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFIntroduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.
Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!